재밌는 문제 풀어보셈요(10.13)(1500덕)
게시글 주소: https://orbi.kr/00069471012
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇ,헤헤 2
ค็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็็...
-
주말 의대반 0
가보신 분? 물어볼게 좀 있어서
-
영어 0
션티 쌤 커리 타는데 키스로직 vs 키스키마 베이직 고2입니다
-
설의 포기한사람 5
엄마랑 뒤지게 싸우고 엄마는 충격으로 병원갔다네용
-
내일보자 2
오늘 그만 본다는 말은 아니고
-
재밋을듯
-
님들 그거 알았음? 24수특문학 '원미동 시인'에 몽달 씨 두들겨 맞을 때 방관한...
-
옯컹컹컹 13
&(&(&(&&@@###*%*^$$ 챱챱챱
-
중경시부터는 차마 내가 넘볼수조차 없는 너무 큰 벽이라 열등감도 느끼지 못했음
-
그럼내년에.. 이게아닌가?
-
응 3수 ㅁㅌㅊ?
-
급식시간 2
교실에 혼자 앉아 먹는 도시락..
-
말그대로 인강 다듣고 개념끝냈으면 국어처럼 하루에 마더텅3지문 이런식으로 쭉...
-
저도 현역때 합응 연고전 영상 다 관심없음 누르긴 함 4
근데 입학하고 몇주정도까진 그정돈 아녔는데 나름 냥뽕차있었는데.. 물론 1달을 못가긴 했지만
-
넌 왜 밥도 맨날 혼자 먹어?친구 없어?
-
칼국수 먹고샆다 3
ㅠㅠ
-
ㅋㅋ현실은..
-
와퍼먹고싶다 13
ㅋㅋㅋ와퍼진짜맛잇는데감자튀김도같이먹고싶다.수학2개재미없다수학2를해야하는걸까수학2한문제...
-
가려야돼
-
과하게 남성성을 어필하시던 분이 있어서 무조건 남자일 줄 알았는데 프로필...
-
님들 단발 중단발 장발 13
저는 중단발이긴합니다.
-
반어법이 ㅁ
-
줫같은 밴픽은 시나리오에 없었지... 왜 -빅- 이새끼랑 코씨가 같은 밴픽에 있는거냐고..
-
지문싹읽고 문제 싹푸는?이러면 내용을 안까먹나요?문학처럼 푸는게...
-
되겠죠..? 25일에 어차피 학교 가야되는데 그날 가도 3월 전에 자퇴 처리...
-
클릭하면 바이러스 걸리나요?
-
여기에서 25학년도 수능준비했어요 궁금하신점 답변해 드릴게요
-
나 닉변하고 싶은데 덕코 빨리 모으는 방법좀요.. 15
이거 ㅂㄱ을 상대로 전체 도발 날린거 같아서 조금 쫄리는데
-
처녀의 반대기때문
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
ㅁ프ㅓ,ㅑㅏ찌ㅒㅖ >":?/;.마ㅡ,ㅑㅣoswjfdeu8 9rvc 14
jisrfdegktolup;9/'gijolp0;/srw8um9kjsimkgreflo;...
-
반동 심해서 에임 다 빗나간다....
-
어그로 좀 그만 끌어라 다들 그게 중요한 게 아니다 9
진짜 중요한 건 바로 말 안해도 알거라고 봄
-
이따구 밴픽 보고도 하하호호 우리는 즐거워요 하하호호 사실 젠지를 만나기...
-
ㅇㅈ 10
한번 더! 한번 더!
-
화가 나는 짤 5
-
문제가 올해 해결된다고 하면 대량 유급시킨다는 말이 있던데… 정상적으로 대학생활...
-
07년생이란 3
2007년에 태어낫다는 것
-
고민된당 우
-
딴동내앤 두부두루치기라는 음식이 없음?
-
ㅇㅈ 6
에헤이~
-
년도별로 되어있는거요 년도별로 쫙 되있는거 보고싶어서ㅜㅜ 혹시 아시는거 있으면...
-
달리기하면 우울한거 싹사라짐
-
ㅇㅈ 10
그런건 없어
-
ㅇㅈ하거 자러감 20
오늘도 늘 보던거
-
ㅇㅈ 6
-
아무런 뜻이 없소이다
-
과탐 가산 좀 크다는데 과2하기엔 반수라 시간부담이 클거같음 작수 과탐 ㅈ박기도 했고..
-
잘생긴 성인 남자 아이돌한테 수치심을 줘보고싶다 ㄹㅇ 도파민 폭발
답 0 맞나요?
가짓수는 각각 720, 720.
다르게 나오는 것 같아요!
답 240인가요.
좀 작습니다...
아 ㅋㅋ. 어디서 이상한지 알 것 같네요, 오늘 상태가 안 좋네요. 다시 풀어보죠.
화이팅하세요!
답 20인가요.. (자신감이..)
정답입니다!
미리 풀이 올려봅니다. 저는 점화식을 이용해서 풀었습니다.
X의 원소의 개수를 n이라 할 때 f,g의 개수를 각각 a_n,b_n이라 하자.(n은 자연수)
a_2=2, b_3=4임은 쉽게 알 수 있다.
또한 a_(n+2)=\binom{(n+2)}{2}*a_2*(n!-a_n),
b_(n+3)=\binom{(n+3)}{3}*b_3*(n!-b_n)임도 쉽게 알 수 있다.
따라서 이를 통해 계산해보면 a_6=180, b_6=160이고, 구하는 값은 180-160=20이다.
주어진 점화식을 이용하면 a_1,a_2,b_1,b_2,b_3의 값만 계산하면 일반적으로 n에 대해 식을 찾을 수 있겠습니다만, 계산은 귀찮네요.
점화식으로 일반화까지 하시다니 멋지십니다! 근데 주어진 X의 원소 개수가 적어서 간단한 계산으로도 풀수 있습니다 ㅎㅎ
제가 경우의 수가 좀 이상하게 관심이 없는 분야라서 잘 못합니다 ㅋㅋ, 그래도 재밌게 풀어봤습니다. 감사합니다.