회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00069423316
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
누난교수나는학생
-
사실 초 엘리트 ms 영재반들의 활약임
-
이거 그래서 채팅에다가 영혼담는 거 어케하는 거임? 0
막 우악이이익하면서 그럴수 있어 괜찮아! 이게 최대한의 영혼을 영끌한거다
-
라면먹어야겠다 진매로 간다
-
가렌.. 0
-
화해시킴
-
거의 코끼리임 맞아보실 분
-
빠르게 수능을 완주해내겟다는 뜻도 잇다만 남들 신경 안 쓰고 내 페이스 유지하면서...
-
뿌직 헤헤
-
음악 얘기 보고 ptsd 왓음순간 눈이 뒤집혓음
-
잠이부족해서 그런게 분명
-
팬티 달래주는 중임
-
엉덩이에 누워잇음
-
뉴비입니다. 5
3덮 치고나서 오르비 몇번 들어왔다가 어느순간 이렇게 새벽까지 보고 있네요. 처음엔...
-
내 손이랑 발이랑 코랑 분신 보면 키 190은 찍어야하는데
-
미쳤다 ㅇ이건
-
특히 손 발은 존나 큼
-
뻥임뇨
-
왜 나는 근데 몸무게가 이러지
-
뻥임
-
재수생 달린다
-
뻘글장인 찾아서 함 물어봐야겟음
-
정글링해야겟다 0
ㄱㄱ
-
뻥임
-
비가 언제와요? 5
벚꽃은 못보겠군
-
나 키 1cm임 3
뻥임
-
이거 외워야함 9
1001=7*11*13ㄹㅇ임,
-
북향이라 그런가 밤에는 아직도 겨울같다
-
나 고1때는 210cm는 찍엇는디
-
데이트하러가기로함 11
바지랑 데이트임
-
비무장지대에 있는 유일한 마을이라네요,,,
-
남자면 좋은 점 4
분신이 잇음
-
제 최애짤임 페이커 쪼낙만큼 좋아함 진짜 너무 귀여워 해보신분 있으면 후기좀 알려주셈
-
아 메인 저격이구나 13
근데 내 저격임
-
벚꽃 벌써 다 떨어지는거임? 봄 온 지 얼마나 됐다고
-
이해가 안 간다고
-
지금 나가면 위험하다.
-
맞다 수학에 All in
-
이 노래를 들으며 담배를 펴보아요
-
자라 인마 0
뭔 새르비여 어제 4시에 자고 독재에서 지옥을 맛보고옴
-
시발정상인가
-
몸에서 닭냄새남 이러다 날개도 생길 듯 우야노 우야노 우야농
-
매독 공부중 4
방금까지 쯔쯔가무시 했음 공부한들 뭐가 달라지나 싶기도
-
제발 내년은 7
수학이랑 딸이랑 겜만 할 수 잇는 나로 만들어다오 그러려면 올해를 잘 보내야겟지
-
끝 6
그만하께여
-
언제부터 재수 삼수를 쾌적하게 트라이하는걸 제도가 보장해주는게 당연했음? 하고...
-
오르비 안녕히주무세요 25
해 뜨고 봐요!
-
나 어디살지 9
속초?안산? 수원? 당진? 어디 사는거지;;
-
-
음… 이래서는 졸업하고 뭐 얻어갈게 있나 싶어서 약간 불안..
그런게 체감이 되나? 전 그냥 이것저것 풀다보나 어느순간 너무 강해져버림
재능충 ㄹㅈㄷㄱㅁ
234ㅇㅈ 근데 왜 성적은 안늘지 ㅜㅜ
저는 실력 느는거 체감 진짜 잘 안되던데 점수만 오르지
헉 저는 반대인.. 실력 오르는 느낌 먼저 확 나고서 시간차 두고 성적 오름
4번 ㄹㅇ
4번 좀 찔리네요 ㅎㅎ...직관으로 케이스 때려맞춰서 넣고 푸는 경우 꽤 많았는데 엄밀함이 부족하다고 생각들긴했거든요 ㅠ
후에 다른 케이스 모순도 검증해보는 식으로 공부하시면 더 일취월장 하실 수도...!
오히려 전 반대였음
꼼꼼한 성격이라 시험풀때도 엄밀한걸 중요하게 생각해서 강박이 있었는데 그걸 버리니까 확 오름
물론 시험칠 땐 좀 과감해질 필요도 있죠
근데 4번은 실모 일 때는 해봐야 되는거 아닌가요
ㄱㅁ 4번은 진짜 절실할때 (실모 연습시 시간부족)만 하는게맞는듯
사실 다른 케이스 모순 보이는 거 자체가 엄청나게 시간이 걸리는 것도 아닌 문제들이 많아서
말씀하시는거 고수의 향기가 나는데 ㄷㄷ올해 수학성적 많이 올리셧겟어요
히히 수능은 더 잘쳐야죠
4번의 의미가 궁금해요.(진짜 순수 궁금)
삼차함수다= 특이점부터 파악
수열15번= 역추척 중간부터 순추적 이런거도 찍기에 해당되나요..?
케이스를 나눠야 한다면 당연히 될만한 것부터 보는 게 좋지만 케이스를 나누기 전에 조건을 잘 조합해서 시도해보지 않아도 모순임을 알 수 있는 케이스들을 배제해놓는 게 좋은 것 같아요
직관적으로 설명하자면 갈림길이 있을 때 직접 가보지 않아도 여긴 답이 아니다를 알 수 있으니까 문제를 좀 더 확실하게 풀 수 있다..?
삼차함수 문제는 뭐 물론 특수가 답이면 그대로 답을 내면 되겠지만 그 케이스에서 원하는 답이 안 나왔을 때 이후에 답까지 가는 시간을 줄일 수 있고
점화식은 값의 음양, 범위 등등의 이유로 이 수열에서는 나올 수 없는 값들을 알면 나열하는 시간들을 줄일 수 있어요
4번 진짜 고쳐야하는 거 자주 느끼는데 참 버릇 잘못 드려놓으니까 고치기 많이 힘들더라구요..
저도 올해 상반기까진 습관이라 고치기 힘들었네요.. 후
4번 하다보니 오히려 찍기 실력 늚
이것도 맞긴 함 ㅋㅋㅋ 시험장에서는 빨리 답 내야하니까 어느정도 감각을 늘릴 필요도 있음...
2번 어떻게 보강해야하나요… 나머지는 잘하는데ㅠㅠ 계산에 너무 약함 지수로그함수나 정적분 특히…
지수로그함수랑 정적분에서 막히는 건 식이 길어질 때 말려서 그러시는 것 같은데
지수로그는 x좌표랑 y좌표 비율 보는 거 연습하시고
정적분은 시중에 알려진 적분공식들을 바로바로 적용할 수 있게 연습하는 게 도움이 되실 거예요 (예를 들어 이차함수 적분할 때 포물선 넓이랑 삼각형으로 쪼개서 계산하기, 삼차함수 적분할 때 대칭성 적극 활용하기 등등..)
시중에 알려진 강의는 뭐가 있는지 잘 모르겠네요 ㅠ

감사합니다!! 잘 참고하겟습니다교과서가 ㄹㅇ... 개념이 뭔지 정확하게 알고 모르고의 차이가 큰듯
생각보다 정의 자체가 중요한 순간들이 있는 듯요
4번이 ㄹㅇ임
최대한 논리적으로 푸는게, 찍어서 풀려고 요령피우는거보다 빠르고 뇌정지가없음
귀류를 치더라도 모순임을 더 빨리 보일 수 있게 되는 것 같아요
4번은 그렇게 크게 문제는 안되는듯. 보통 찍은 케이스가 아니었을때 당황타고 뇌정지 와서 망하는 경우가 있는데, 찍기전에 이거 먼저 해보고 아니면 다른 케이스 한다고 미리 마음속으로 외치고 들어가면 찍은 케이스 틀려도 뇌정지 안옴.
ㅇㅈ 수능만점자분도 찍기로 푸신거같던데
대충 넘어갔어서 그런가 개념부분 252627에서 가끔 막히는데 개념은 어떻게 채우나요 삼각함수 코사인 사인에서 파이/2 더하고 뺄 때도 부호 어떻게 바뀌는지 헷갈려서 맨날 그래프 사분면 그려서 풀어요
저는 연초에 한완수 보면서 쭉 복습했어요
혹시 3번은 어떤식으로 전개되는건가요?
간단한 예시로 g(x)=f(x)+4x라고 했을 때,
g'(x)=f'(x)+4기 때문에 g(x)는 f(x)의 모든 좌표에서 기울기를 4만큼 증가시킨 함수고 때문에 g(x)는 f(x)의 기울기가 -4일 때 미분계수의 값이 0이다
머 이런 것도 있겠고 y=x(x-3)²+mx+n이라는 곡선이 있을 때 그래프의 개형이 y=mx+n과 x=3일 때 접하는 꼴이다
이런 예시정도 들 수 있겠네요
식을 곡선이랑 직선의 합차로 쪼개서 보는 게 제일 중요한 것 같아요