18 9모 30번에 대한 생각
게시글 주소: https://orbi.kr/00069412931
기출을 풀면서 중요한 것이 애매함을 없애는 과정이라고 생각합니다.
단순히 이럴 것 같아서, 여기서 극대라고 배워서, 이 케이스가 답이라고 배워서 기출을 풀면
많은 것을 얻어가기 힘들다고 생각합니다.
18 9모 30번은 그런 애매함이 있는 문제라고 생각합니다.
아래 글을 읽기 전에 한번 풀어보시길 권해드립니다.
f(x)-g(x-k)를 h(x)라고 두고 h'(k)=0 h(k)>0인 어떤 값이라고 생각하는 데까지는 쉽게 생각할 수 있습니다.
하지만 왜 k-1부터 k+1구간까지에서의 최댓값을 볼 떄 왜 k+1이 최댓값인지가 애매한 것입니다.
이것을 확인하려면 h'(x)를 봐야합니다.
h'(x)는 f'(x)-g'(x-k)이 됩니다. 그런데 f'(x)는 증가하는 함수입니다.
미분하고 e^x를 x처럼 생각하고 보시길 바랍니다. 그럼 x>0인 곳에서 증가하는 함수입니다
그리고 e^x>0입니다. 그리고 증가함수죠. 증가에 증가를 합성했으니 증가입니다.
g'(x-k)는 감소하는 일차함수죠.
증가하는 함수와 감소하는 일차함수의 차..
기출에서 본 적이 있을 수도 있는 상황입니다.
이것 떄문에 극소가 한개 나오는 것이고 k에서 최솟값을 가지는 것입니다.
그러므로 k-1 또는 k+1에서 최댓값이 나오겠군요.
그럼 어떤 값이 더 큰지 봐야합니다.
이 문제에서는 h(k-1)<h(k+1)인지 조사해야합니다
h(k+1)-h(k-1)를 계산하고자 하면 문제에서 준 e에 대한 부등식 조건도 사용할 수 있습니다.
이것이 양수임을 알게 되고 h(k+1)이 최댓값임을 알게 됩니다.
앞으로 수능까지 기출에서 놓칠만한 애매한 부분들에 대해 글을 좀 써보고자 합니다.
감사합니다. 부족하거나 오류가 있을 수도 있으나 댓글로 조언 주시면 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
독서 화작 다 맞혔는데 문학 때매 또 바닥치네...
-
... 뭐해? 2
올려
-
갑자기 생각나는건데 해외에서 원서접수 가능한가요?
-
학교가기싫어 1
실험몰라퀴즈몰라
-
어부사시사<<< 이감,상상 마지막회차에 전부 수록
-
근데 모든사람이 다맞아버리면 그해 수능은 ㅈ되는 거잖아 모든사람의 수능을 응원하려면...
-
알리고 싶은 아침이로군.. 농담입니다~
-
ㅇㅇ
-
제가.. 진짜 바보마냥 국어문풀할것들을 안 들고왓능데... 피뎊으로 기출...
-
가채점표 쓸 시간에 문제 줠라게 풀어야함 시험 끝나고 문제 공개되면 그때 수작업으로 가채점해야지
-
이거 풀지 말고 기출 볼까요. 멘탈 관리 차원에서 4회 5회는 둘다 91 91...
-
앞자리 7로 마무리 뭐지다노 ㄹㅇ...
-
반 애들이야 최저 낮거나 하면 조금 시끄러울 수 있다고는 생각하는데 공부 하고...
-
수능 하루전에 더데유데 한회차가 남았는데 그걸풀까요? 아니면 기출을 다시 좀...
-
올해 6,9 평 제시문을 유심하게 봐라 2023학년도 수능 2번 문제 “명예를...
-
그래그래 2
내년에또봐그냥
-
1. 황금비례와 음악과 건축미학 2. 삼각함수와 경기변동. [3점으로 식 세우는...
-
물론 보자마자 나는 잘못받았다고 말씀드림 > 감독관이 다시 수거해감 > 근데 나만...
-
현역 국어 마지막 실모 2개 추천 부탁드립니다 형님들.. 1
첫수능 3일을 앞두고있는 어린양에게 투표 한번씩만 부탁드립니다ㅣ.....
-
독서지문이 어려운편은 아니었지만 그렇다고 해도 전체적인 난이도가 1컷 94정도까지는...
2018학년도 9월모의고사 수학 가형 30번인거 같아요!
감사합니다