클로드,ChatGPT,제미니, 코파일럿 한테 물어봄
게시글 주소: https://orbi.kr/00069393127
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
모솔 정의 8
섹은 원나잇 이런거로 해봤는데 사겨본 적은 없으면 모쏠인가요?(물론 제 얘긴 아닙니다)
-
28 시간 + 능지 이슈로 못품 30 정수가 된다는거 제대로 못구해서 200 나오고...
-
2025학년도 정시 전형 - 한국항공대, 한국교통대, 경찰대, 서울여자간호대 0
안녕하세요 나무아카데미입니다! 어느덧 수능을 한 달 앞 둔 가을이 왔습니다....
-
이차곡선에서부터 다 나가리될 줄은 상상도 못했네
-
어떻게 백분위가 87 87 92 92 91 "65" ㅋㅋㅋㅋㅋ 두뇌 주작은 뭐야 씨 발
-
오늘 킬캠 개망 4
아..
-
아래 문제를 어떻게 풀지 아예 모르겠어요ㅠㅠ 콴다에서는 (가) 용액을 산성으로...
-
매일 핫식스 한캔 꼭 마시다가 오늘은 아아 테이크아웃해서 반 정도 마셨는데 무슨 심장 존나 빨리뛰네
-
5천덕코만큼 화남
-
전쟁 걱정하면 ㅈㄴ 웃길듯 ㅋㅋ 그동안 군대 비하 ㅈㄴ 했으면서
-
연대 인문논술 질문 10
복기해보니 2-1 까지는 거의 중요쟁점이랑 세부적인거 다 잡은거 같습니다. 하지만,...
-
2025학년도 정시 전형 - 서울과학기술대, 한국기술교육대, 한국공학대 0
안녕하세요 나무아카데미입니다! 어느덧 수능을 한 달 앞 둔 가을이 왔습니다....
-
아 시발 12
한국사 노베 5일만에 2급가능함? ;;
-
국어에서 3
문학 다틀리고 화작이랑 독서 다 맞으면 몇등급임
Ai는 워낙 왜곡이 많아서 증거로는 좀 힘든데…
일단, “적어도 하나의 세상에서 존재하는 모든 것들의 집합“ 을 X라 함.
그럼, X^c는 “그 어떤 세상에도 존재하지 않는 것들의 집합“ 임.
이제 여기서 예시를 듭시다.
전체집합이 자연수인 집합 K를 “홀수의 집합” 이라 정의하겠음. 그럼, K^c는 “짝수의 집합” 이지, “홀수가 아닌 모든 실수의 집합”, 또는 “홀수가 아닌 모든 사원수의 집합” 따위가 아님. 그 이유는 전체집합 때문이고..
이제 님이 말한 A를 보면, A는 전체집합 X 중 이 세상에 존재하는 것의 집합임. 즉, A^c 또한 전체집합 X 중 이 세상에 존재하지는 않는 것의 집합임.
따라서, 아예 모든 세계에서 존재하지 않는 것이 없음을 증명하지 않는다면, 님 주장은 흠결이 있음.
ai 쟤들도 전체집합을 존재하는 것으로 보는 듯?
모든x가 A또는 A^c에 속하는데 어떻게 모든세계에서 존재하지 않는것이 있음?
니가 말하는 “모든 x” 라는 말이 전체집합 X 안에 포함됨
∀x(x∈A∪A^c) 의 부정형이 거짓이니까 ∀x(x∈A∪A^c)가 참임
난 그 명제를 부정한 적 없음
A의 전체집합을 다시 생각하셈
님이 "아예 모든 세계에서 존재하지 않는 것이 없음을 증명하지 않는다면" 라면서요
누가 이딴짓을 하나 했더니 또 넌구나
내가 올바른 논리학을 교육시키고야 말겠음
A^c에 속한다는 것이 이 세상이 아닌 세상엔 존재함을 함의하는 것이 아니라고 계속 말하는거임 나는
그럼 저 ai는 뭐임
전체집합을 “존재하는 것들의 집합” 이라고 가정하여 말하는 거라니까
그리고 ai 별로 믿을만하지가 않음 ㅇㅇ…
나한테 전긍정하면서 답해줄 때가 많음
그럼 자연수집합에 1과 2가 있으면 1과 2는 자연수세계에 존재함?
예 근데 그게 왜요
그럼 유니콘은 A^c세계에 존재하는거아님?
A^c세계에 존재함이 정확히 뭔 말임
“존재하지 않는 것들의 집합” 에 속하는 것도 존재한다고 치는 거임?
A세계에 존재안하는거지 A^c세계엔 좀재하죠
x가 모든것, 즉 말그대로 모든것(허구포함) 이면 A또는 A^c에 속한다는게 뭐가 잘못되었죠..
말 그대로 허구를 포함한 모든 것이라도 A^c에 포함된다 = 참.
A^c에 포함되는 것이면 이 세상이 아닌 다른 세상에는 존재한다 = ?
이게 이해가 안 되는 거임?
A^c세계에 존재하는거아님?
유니콘이라고 적었는데요 짤에
A^c세계에 존재함이 정확히 뭐임?
A^c세계에 존재한다는 말의 정확한 정의가 뭐임
x가 A^c에 속하는거요
A^c = “이 세상이 아닌 세상에 존재하는 것” + “그 어느 세상에도 존재하지 않는 것” 이 두 집합의 합집합이라는 거 이해감?
모든 x가 A또는 A^c에 속하는데요
그게 갑자기 왜 나옴? 일단 들어보셈
A^c = “이 세상이 아닌 세상에 존재하는 것” + “그 어느 세상에도 존재하지 않는 것” 이 두 집합의 합집합이라는 거 이해감?
모든x가 A 또는 A^c에 속하는데 어떻게 어느세상에도 존재하지 않는것이 있음?
?
내가 몇 번이나 말한 건데
A^c에 속함이 그 존재성을 보장하지 않음
이게 이해가 안 되면 내가 x랑 x^c 얘기했던거 다시 보는 거 추천 ㅇㅇ
전체집합의 설정에 오류가 있음
집합에 속한다는거 자체가 원소로서 존재한다는건데
Y에 속한다는거 자체가 원소로서 존재함을 의미함
원소로서 존재함이 뭐임
ex) 지구의 물리법칙 하에서 가만히 놔두면 위로 올라가는 물체 를 가정하겠음.
얘는 ”개념“ 으로써는 존재함.
하지만 그게 ”세상에 존재한다“ 라고 말할 수 있음?
A^c에존재
그건 “세상에 존재한다” 와 거리가 멀다고 생각하지 않음?
이세상엔 안존재하죠
방금 내가 가정한 물체는 “저 세상” 에도 존재하지 않는 물체 아님?
아니면
“6면체 주사위를 던졌는데 7이 나오는 사건.”
이건 어떻게 생각함?
저 사건의 ”개념“ 은 존재함.
그러나, 저 사건이 어떤 세상에 존재한다고 말하기는 힘들 것 같음
A에 없으이 A^c에 있죠
그리고 A합집합A^c는 전체집합이 맞음
그리고 A합집합A^c는 전체집합이 맞음
정확함
그건 “전체집합” 임
그리고, 전체집합이 ”존재하는 것“ 일 뿐임
그냥 저 칭찬해 달라고요
요시요시
훗