클로드,ChatGPT,제미니, 코파일럿 한테 물어봄
게시글 주소: https://orbi.kr/00069393127
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아.. 3
-
이제껏 화작-문학-독서 순으로 풀어왔는데 이렇게 하니까 항상 독서 마지막 1지문 풀...
-
2등급 받으면 좋고 3등급만 받아도 되는데 입시 판 뜬지 좀 오래돼서 요새 사문...
-
만약 진짜 성적 드라마틱하게 올리는거 보고 싶었으면 정말 열심히 하고 많이...
-
학벌이 높아지면 나중에 키우던 사람이 마중나온다는 이야기가 있다 1
나는 그이야기를 무척 좋아한다
-
엉엉
-
문학 기출분석 X 선지허용 X 문풀 루틴화 X 문제먼저X 보기먼저X only...
-
빡모 80 중반 해모 80 초반 배성민 80 초반 . . . 이런식으로...
-
수학 보통 4초에서 3컷 걸치는데 원래 미적이 노배였어서 지금은 27번 까지는 풀...
-
국어영어수학탐구가쉬워지는지어려워지는지변화를볼수있다니럭키비키한걸
-
쫌 어렵네 원래 기출보다 계산이 좀 빡센 게 있구나 해설지에 붙어있는 기출 풀면서...
-
밀리진않겠지
-
하락곡선고딩 오늘 중간고사 봅니다
-
2025학년도 정시 전형 - 광운대, 명지대, 상명대, 가톨릭대 0
안녕하세요 나무아카데미입니다! 어느덧 수능이 두 달도 채 안 남은 가을이 왔습니다....
-
하
-
머가 더 갠찬ㅁ?
Ai는 워낙 왜곡이 많아서 증거로는 좀 힘든데…
일단, “적어도 하나의 세상에서 존재하는 모든 것들의 집합“ 을 X라 함.
그럼, X^c는 “그 어떤 세상에도 존재하지 않는 것들의 집합“ 임.
이제 여기서 예시를 듭시다.
전체집합이 자연수인 집합 K를 “홀수의 집합” 이라 정의하겠음. 그럼, K^c는 “짝수의 집합” 이지, “홀수가 아닌 모든 실수의 집합”, 또는 “홀수가 아닌 모든 사원수의 집합” 따위가 아님. 그 이유는 전체집합 때문이고..
이제 님이 말한 A를 보면, A는 전체집합 X 중 이 세상에 존재하는 것의 집합임. 즉, A^c 또한 전체집합 X 중 이 세상에 존재하지는 않는 것의 집합임.
따라서, 아예 모든 세계에서 존재하지 않는 것이 없음을 증명하지 않는다면, 님 주장은 흠결이 있음.
ai 쟤들도 전체집합을 존재하는 것으로 보는 듯?
모든x가 A또는 A^c에 속하는데 어떻게 모든세계에서 존재하지 않는것이 있음?
니가 말하는 “모든 x” 라는 말이 전체집합 X 안에 포함됨
∀x(x∈A∪A^c) 의 부정형이 거짓이니까 ∀x(x∈A∪A^c)가 참임
난 그 명제를 부정한 적 없음
A의 전체집합을 다시 생각하셈
님이 "아예 모든 세계에서 존재하지 않는 것이 없음을 증명하지 않는다면" 라면서요
누가 이딴짓을 하나 했더니 또 넌구나
내가 올바른 논리학을 교육시키고야 말겠음
A^c에 속한다는 것이 이 세상이 아닌 세상엔 존재함을 함의하는 것이 아니라고 계속 말하는거임 나는
그럼 저 ai는 뭐임
전체집합을 “존재하는 것들의 집합” 이라고 가정하여 말하는 거라니까
그리고 ai 별로 믿을만하지가 않음 ㅇㅇ…
나한테 전긍정하면서 답해줄 때가 많음
그럼 자연수집합에 1과 2가 있으면 1과 2는 자연수세계에 존재함?
예 근데 그게 왜요
그럼 유니콘은 A^c세계에 존재하는거아님?
A^c세계에 존재함이 정확히 뭔 말임
“존재하지 않는 것들의 집합” 에 속하는 것도 존재한다고 치는 거임?
A세계에 존재안하는거지 A^c세계엔 좀재하죠
x가 모든것, 즉 말그대로 모든것(허구포함) 이면 A또는 A^c에 속한다는게 뭐가 잘못되었죠..
말 그대로 허구를 포함한 모든 것이라도 A^c에 포함된다 = 참.
A^c에 포함되는 것이면 이 세상이 아닌 다른 세상에는 존재한다 = ?
이게 이해가 안 되는 거임?
A^c세계에 존재하는거아님?
유니콘이라고 적었는데요 짤에
A^c세계에 존재함이 정확히 뭐임?
A^c세계에 존재한다는 말의 정확한 정의가 뭐임
x가 A^c에 속하는거요
A^c = “이 세상이 아닌 세상에 존재하는 것” + “그 어느 세상에도 존재하지 않는 것” 이 두 집합의 합집합이라는 거 이해감?
모든 x가 A또는 A^c에 속하는데요
그게 갑자기 왜 나옴? 일단 들어보셈
A^c = “이 세상이 아닌 세상에 존재하는 것” + “그 어느 세상에도 존재하지 않는 것” 이 두 집합의 합집합이라는 거 이해감?
모든x가 A 또는 A^c에 속하는데 어떻게 어느세상에도 존재하지 않는것이 있음?
?
내가 몇 번이나 말한 건데
A^c에 속함이 그 존재성을 보장하지 않음
이게 이해가 안 되면 내가 x랑 x^c 얘기했던거 다시 보는 거 추천 ㅇㅇ
전체집합의 설정에 오류가 있음
집합에 속한다는거 자체가 원소로서 존재한다는건데
Y에 속한다는거 자체가 원소로서 존재함을 의미함
원소로서 존재함이 뭐임
ex) 지구의 물리법칙 하에서 가만히 놔두면 위로 올라가는 물체 를 가정하겠음.
얘는 ”개념“ 으로써는 존재함.
하지만 그게 ”세상에 존재한다“ 라고 말할 수 있음?
A^c에존재
그건 “세상에 존재한다” 와 거리가 멀다고 생각하지 않음?
이세상엔 안존재하죠
방금 내가 가정한 물체는 “저 세상” 에도 존재하지 않는 물체 아님?
아니면
“6면체 주사위를 던졌는데 7이 나오는 사건.”
이건 어떻게 생각함?
저 사건의 ”개념“ 은 존재함.
그러나, 저 사건이 어떤 세상에 존재한다고 말하기는 힘들 것 같음
A에 없으이 A^c에 있죠
그리고 A합집합A^c는 전체집합이 맞음
그리고 A합집합A^c는 전체집합이 맞음
정확함
그건 “전체집합” 임
그리고, 전체집합이 ”존재하는 것“ 일 뿐임
그냥 저 칭찬해 달라고요
요시요시
훗