님들이 관심있는거를 명제로 나타내셈
게시글 주소: https://orbi.kr/00069386140
그리고 그명제를 대우명제로 바꿔도 보고 귀류법도 써보고
부정도 해보고
다른명제랑 연결도 해보셈
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강k한테맞고이감으로회복하기매주반복중ㅋㅋ
-
극한의 비효율
-
수학실모 추천해주실수 있나요 전국서바 초반푸는데 대가리 ㅈㄴ깨지네...
-
그건 바로 나 내가 나를 만나면 뽀뽀 와구와구 해볼리꾸야 귀여운 뇨속
-
흠..
-
죽고싶다.. 진짜
-
그냥 오늘 레전드를 세움 ㅇㅇㅇㅇㅇ 축하한다 내 자신 g(x) > 0 되어있는 거...
-
만약 이계도함수가 불연속이어서 x=a에서 이계도함수가 부호만 바뀌고 0이 되지는...
-
그냥 먹었음ㅎㅎ 맛있넹
-
진지하게 가능한가요? 화작 미적 생윤 사문 9모 저성적인데 국어는 이례적으로...
-
다들 수능 공부 쉬는 날 뭐하면서 시간 보내세요? 11
몸이 무기력하고 억지로 책을 펴도 눈에 들어오는 게 없는 날 그런 날 있잖아요 그때...
-
그러므로 난 주장한다
-
76맞고 멘탈 터짐
-
아오
-
진짜 허를 찔러서 수능에 나와봤자 8번 정도에 나오고 말듯 안 나올 가능성이 더 크고
뭉탱이의 역은 유링게슝이다.
Continuous => integrable
E has measure zero => Riemann, Lebesgue integrable
Closed & bounded => compact (in real)
고졸인디..
(Closed & bounded) & ~compact
이거 참임?
Closed하고 bounded면 compact이라고
제말은 그 명제를 부정형으로 만들라는거임
Every closed and bounded set is compact.
Therefore there does not exist set which is closed and bounded and compact.
그럼 대우명제는요?
If some subset of real is not compact, then the set is not either closed or bounded
참인가요
당연하죠
실수체에선 닫혀있고, 유계인 집합은 컴팩트하다는 건 동치임이 알려져 있습니다…
대우명제가 참인가요? 그게 대우명제임?
애초에 명제가
“실수에서 닫혀있고, 유계인 집합은 컴팩트하다”라면 그 대우인 “컴팩트하지 않은 실수의 부분집합은 닫혀 있지 않거나, 유계가 아니다”가 당연히 되겠죠????
그렇군요 고졸이라 뭔말인지는 모르겠습니다