진짜 이거 안되는 거였음..? 첨 알음ㄷㄷ
게시글 주소: https://orbi.kr/00069385246
님들 몫의미분이랑 음함수 미분 같이 하면 안되는 거 알음?
문제 푸는데 계속 안되길래 찾아봤는데 안되는 거였네
와 나름대로 수능 수학 꽤 오래했다고 생각하는데, 이거 첨 알음 ㄷㄷ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질문받습니다. 19
네
-
대통령 같지도 않은거 탄핵 직전이라 과연 말을 들을까 의문
-
진짜 궁금해서 물어봅니다..
-
영어 ㅋㅋㅋ 20학년도부터 25학년도 9평까지 현장 응시로 1등급 내려가본 적 한...
-
얘네는 자연계열로 배치에요 아니면 인문계열 배치에요?!
-
멘탈나가네 4
울고싶다 수능은 정신병 장수생들 정신병안걸리는것도 대단한 일이예요
-
대부분을 차지하고 있던 4 종목 좀 운이 좋은것도 있긴 한데 많이 오른것만 골라서...
-
내가 좀 생각해봤는데 12
인생 너무 짧음 딱 지금 이 정신연령일때 만 7세쯤 되면 좋을것 같음
-
언매 만표 145 이상 확통 만표 140 이상 영어 1등급 5퍼이상 경제사문 둘다 만표 70이상
-
이게 절평 취지에 맞지 ㅇ
-
후기를 찾아보는데 다 예쁘다는 말밖에 없네요 기초다지기에 괜찮나요???
-
피곤하군 3
오루비할힘도없어
-
사람이 너무 많아선진 모르겠는데 머리가 굉장히 아픔...
-
저 한녀인데 6
화학함
-
강사 고를 때 8
개인적으로 학사 학위를 봄 대학원 세탁은 항상 문제가 많음
-
88 92 정도 나오는데 실력이 는건지 아니면 많이 쉬운건지 모르겠음... 체감사...
-
나는 간다 내일 3
홍천을
-
저도 걍 인강 안듣고 순수 영어력으로 뚫어보려다가 수능 4뜨고 션티 강의 듣는데...
-
아오 화나네 2
왜 다 인스타 스토리에 수시 합격 올리는거임
-
두번째 답변도 이해 못해서 걍 랜덤으로 보내준다는거겠지? 했는데 부적 안왔다......
-
이미 6월에서 보여줬고 거기다 역대급 레임덕이라
-
자 이제 가봐
-
메디컬 가고 싶은 현역 11덮 원점수 ㅇㅈ + 후기..... 27
10덮 같은 경우 너무 바빠서 걸렀고, 오늘 11덮 봤습니다. 아무래도 현역이라...
-
11덮 성적 5
아직 저처럼 더프 홈페이지에 성적 안 올라오신 분 있나요 다들 올라왔나요…?
-
clothing20snu 대성 커피 먹구 가 ~~ ⸝⸝ɞ̴̶̷ ·̮ ɞ̴̶̷⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
ㄹㅇ
-
한학년 선배랑 만짱뜬거때매 은따였는데나한테 말걸어준 고마운 친구한명생각남잘살았으면
-
간이랑 심장 둘다인건가요?? 간만 알고있었는데
-
6모 88점 1등급 9모 98점 2등급입니다. 오늘 이감 실모를 하나 풀었는데...
-
역시 4
대학원으로 학력 세탁한 ㄱㅅ는 걸러야함 ㅋㅋ 읍읍 누군지는 말안함
-
무친;;;;; 5
커피를 마셔도 잠이 오는데 어떡해
-
가끔가다보면 하루종일 보이는 사람들이 있음…
-
걍 6걍의 기적 빈칸만 외우면 3등급 이상은 나오려나요... 한번도 공부해본적...
-
태규형 장사수완 개레전드네
-
등급컷이 너무 높은거 같은데요
-
바람쐴까 3
레전드로 피곤한데
-
순수지능과 지식에 대한 열등감 연뱃 ㄹㅈㄷㄱㅁ이 아니라 나는 머릿속에 수능공부말곤...
-
보고 어떤 개념 써야할지는 아는데 느림 계산도 딱히 못하지는 않지만 그냥 느림...
-
걍 9모만큼만 나와다오 18
큰거 안바란다
-
강의는아직이고 파일은 올라왔어요
-
히히
-
수학허접이라 진짜 모르는데 기출 뒤져도 해당 소재 없거나 10년 전 기출에서 따온...
-
수능 점심 10
님들 머 가져가실거임?
-
H84에서 3번답이 너무 명확하지만 2번 선지에서 헤맸는데요.. 2번선지입니다...
-
밥먹구 해야지 22
어제 남은 치킨 돌려야겟다
-
커리어 로우
-
23수능 결국못푸는ㄱㄴㄷ 발상적인수열 은근히까다로운21 대놓고좆같은확통
-
12시간 일찍 일어난거다 난 언제나 열두 발자국 앞서있다
-
생윤 어떡해요...? 12
구라가 아니라 현돌을 ㄹㅇ 다 틀려요... 진짜 맞는 거 세는 게 빠를정도인데ㅜㅜ...
y/x = y * 1/x, x에 대해 미분
(dy/dx) * (1/x ) - y * (-1/x^2 ) 이렇게 하면 안된다고요???
네, 예시로 그림속 함수도 누가봐도 도함수가 다른데 음함수+몫의 미분 때리면 도함수가 같게나오는 오류 뜸.
네이버 찾아봤는데, 함수를 결정짓는 요인이 소거돼서 오류뜨는 걸로 나오는 거 같아요.
근데 음함수 미분이랑 몫의 미분이랑 같이 믾이 한 것 같은데뭐지
y/x+x/y=3이나 y/x+x/y=7은 함수가 아니기 때문에 음함수 미분법을 적용할 수 없는 것 아닌가요? 음함수 미분법은 함수 y=f(x)의 관계이긴 하나 식을 정리하기가 어려워 g(x, y)=0와 같은 상황에서 도함수를 쉽게 구할 수 있는 방법인데, 주어진 두 관계식은 y=f(x)의 관계 자체가 성립하지 않아 음함수 미분법도 적용할 수 없는 것이 아닌가 싶습니다.
예를 들어 함수 y=x(x가 0이 아닌 실수)와 함수 y/x=1(x가 0이 아닌 실수)의 경우, 함수 y/x=1(x가 0이 아닌 실수)의 도함수를 구하기 위해 몫 미분과 음함수 미분법을 동시에 적용하면 결국 dy/dx=1을 얻을 수 있고 이것은 함수 y=x(x가 0이 아닌 실수)의 도함수 dy/dx=1와 일치하기 때문에 문제가 되지 않는 것 같습니다
이 문제에서, 마지막에 g'(t)를 음함수 몫의미분으로 풀었는데 안되더라고요 ㅠ 혹시 왜 안되는지 알려주실 수 있으시나요?
답은 95입니다...
우선 저는 정답이 15가 나왔습니다. 제가 놓치고 있는 것이 없다면 정답이 95인 것은 잘못되었습니다. 혹시 문제의 출처가 어떻게 되는지 여쭤봐도 괜찮으실까요? 풀이 과정은 다음과 같습니다.
f'(x)=-3x^2+2tx-t에서 p=[t+루트(t^2-3t)]/3이고 tan[g(t)]=f(p)/p이다.
t=4일 때 p=2이고 (sec[g(t)])^2=[pf'(p)-f(p)]/p^2*dp/dt에서 dp/dt=[1+(2t-3)/[2루트(t^2-3t)]]/3임을 활용해주면 g'(4)=3/20임을 확인할 수 있다.
따라서 100g'(4)의 값은 15이다.
음함수 정리 성립 여부 때문인가
그런것도 있음? 와
dy/dx둘다 y/x 나오는데
y를 x로 바꾸면 결국 다른 도함수가 나올거임
공유해주셔서 감사드립니다! 풀이를 다시 한 번 검토해보겠습니다.
음함수 미분법과 몫 미분을 함께 적용하여도 t=4일 때 p=2, dp/dt=3/4임을 확인할 때까지 같게 나왔습니다.
이후 g'(4)를 구하는 과정에서 차이가 있던 것 같은데 오늘 내로 풀이를 적어 공유드리겠습니다.
https://blog.naver.com/tablecalm/223612931234
확인해주시면 감사드리겠습니다! 제 실수가 있었습니다.
보통 다항함수 f(x)와 실수 p, t가 주어지고 p가 t에 대한 함수인 경우에 t에 대한 함수 f(p)를 t에 대해 미분할 때는 합성함수 미분법 (음함수 미분법, 역함수 미분법, 매개변수 미분법, ... 모두 본질적으로 The Chain Rule로 정리되는 같은 방법이라 알고 있습니다.) 에 따라 f'(p)에 dp/dt를 곱해주는 식으로 계산을 합니다.
그런데 이 문항에서의 계산은 그렇게 해결할 수 없습니다. f(x) 자체에 t가 포함되어 있기 때문에 f(p)를 단순히 t와 무관한 함수에 t에 대한 함수인 p가 합성된 꼴로 바라볼 수 없는 것입니다. 따라서 f(p) 식을 직접 펼쳐 t와 p를 확인한 후에, 때에 따라 곱미분을 적용해가며 f(p)의 t에 대한 도함수를 발견해 주어야 합니다.
저도 그문제 풀어봤는데 님 그거 같이쓰면 안되는게아니라요 f(p)가 아니라 f(p, t)즉 f(h(t), t)이기 때문임요 그래서 p에대해서만 미분하면 당연히 안됨요
음함수미분은 편미분처럼하는게 핵심인데 f(p)/p를 그냥 미분때리면 안에있는 t는 상수취급되잖아여 그래서 p에대해서 미분한번 t에대해서 미분한번 해야 제대로나옴요
f(p)가 아니라 f(p, t)즉 f(h(t), t)라는 말은 f(p)로 쓰면 안된다는 말이 아니라 f(p)는 걍 식일 뿐이지 함수로 쓰려면 f(p)가 아니에요 왜냐면 그건 p에 대한 함수가 아닐 수 있고 설령 p가 t에 대한 일대일함수라해도 자칫 식 안에 있는 t를 상수취급해버릴 수 있기 때문에 t에 대한 새로운 함수라해야 맞아요(p는 어차피 t에 대한 함수이니까)