Residual Finiteness
게시글 주소: https://orbi.kr/00069377875
Residually finite: For any nontrivial element $g\in G$, there is a subgroup $G_1$ of finite index in $G$ which does not contain $g$.
Locally extended residually finite (LERF): If for each finitely generated subgroup $H$ of $G$, for any element $g\in G - H$, there is a subgroup $G_1$ of finite index in $G$ which contains $H$ but not $g$.
Theorem A. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and covering group $G$. Then TFAE:
(1) $G$ is residually finite.
(2) If $C\subset\tilde{X}$ is a compact subset, then the projection map $\tilde{X}\to X$ factors through a finite covering $X_1$ of $X$ such that $C$ projects by a homeomorphism into $X_1$.
Theorem B. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and a covering group $G$. Then TFAE:
(1) $G$ is LERF.
(2) Given a finitely generated subgroup $H$ of $G$ and a compact subset $C$ of $\tilde{X}/H$, there is a finite covering $X_1$ of $X$ such that the projection $\tilde{X}/H\to X$ factors through $X_1$ and $C$ projects homeomorphically into $X_1$.
위의 theorem B는 특히 중요한데, 만약 $\pi_1(M)$이 surface group $H$를 포함하고 있고, LERF라면, $M$이 virtually Haken임을 내포한다. 다시 말해서, surface group을 representing하는 immersed surface in $M$이 적절한 finite covering을 취하면, embedding으로 lift가 된다는 것.
자명하게 LERF는 RF보다 강한 조건이다. Theorem A,B는 LERF와 RF의 기하학적인 의미를 담고 있다. 보통 해석할 때, $\tilde{X}$는 universal cover를 염두해둔다. 이 경우, Residual finiteness는 다음과 같이 해석된다:
$\pi_1(X)$ is residually finite if and only if for every compact subset $C$ of $\tilde{X}$, there is some finite cover $X'\to X$ with $C$ projects homeomorphically.
만약 $X$에 어떤 geometric structure가 있다고 한다면, $X$의 sequence of finite covering $\tilde{X}_i$가 있어서, 점점더 그것의 universal cover $\tilde{X}$에 가까워진다, 수학적으로는 Gromov-Hausdorff converge한다고 볼 수 있다. Hyperbolic 3-manifold에서는 이것을 geometric convergence라고 부른다.
Examples
1. $M$: a Seifert fibered 3-manifold then $\pi_1(M)$ is LERF.
2. $M$: a hyperbolic 3-manifold then $\pi_1(M)$ is LERF. (Virtual Haken/Fibered Conjecture)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
희소성이 없어져버린..
-
이 문장 좀 맘에 든다
-
고백받았는데 내가 거절했어한순간에 남같이 돌변하더라너무 힘들어 지금도 울고 있어보고...
-
질받 5
-
ㅇㅈ 4
교재인증이었구요 저는 한문과 중국어를 좋아했다네요~지금 풀어 보라 하면 다 틀립니다
-
굇수가 되어 0
약대라도 가고 싶구나 약대도 아웃라이어급으로 높은 곳인데 갈 수 있을까...
-
국어 연계문제집 0
국어 연계문제집 풀거좀 추천해주세요 하루에2~3독서 문학 각각 풀생각입니다 어려우면 좋습니다
-
님들은대학왜감 10
원하는 학과?명성?행복?
-
성적 가지고 고민이신분들 많으신데 높은 점수는 아니지만 저 작년에 9모 평백...
-
반수 공부 첫 달 이후론 패드로만 주구장창 공부했는데 이제 조금씩 머리 아프고 눈...
-
1개만 해도 진빠진다
-
그냥물2나해야지 0
에휴이로그하기싫어
-
9월더프컷 9
-
아 오늘의 저능 포인트 10
사고 실험 여태까지 Accident experiment 인줄 처음에 사고실험을...
-
선악 구분 타고나… 9개월 아기에게도 도덕 본능이[책의 향기] 0
“성선설이냐, 성악설이냐의 이분법을 넘어 좀 더 깊이 있는 논쟁을 할 수 있도록...
-
지금 3~4등급인데 실모 안풀때 기출해야함 아니면 그냥 사설 문풀 양 늘려야함...
-
돌돌돌돌 4바퀴 말음
-
나인듯ㅋㅋ.. 풀로 언미영생지 풀고나면 항상 개현타와서 공부안됨 성적향상감만 있고...
우익수