Residual Finiteness
게시글 주소: https://orbi.kr/00069377875
Residually finite: For any nontrivial element $g\in G$, there is a subgroup $G_1$ of finite index in $G$ which does not contain $g$.
Locally extended residually finite (LERF): If for each finitely generated subgroup $H$ of $G$, for any element $g\in G - H$, there is a subgroup $G_1$ of finite index in $G$ which contains $H$ but not $g$.
Theorem A. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and covering group $G$. Then TFAE:
(1) $G$ is residually finite.
(2) If $C\subset\tilde{X}$ is a compact subset, then the projection map $\tilde{X}\to X$ factors through a finite covering $X_1$ of $X$ such that $C$ projects by a homeomorphism into $X_1$.
Theorem B. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and a covering group $G$. Then TFAE:
(1) $G$ is LERF.
(2) Given a finitely generated subgroup $H$ of $G$ and a compact subset $C$ of $\tilde{X}/H$, there is a finite covering $X_1$ of $X$ such that the projection $\tilde{X}/H\to X$ factors through $X_1$ and $C$ projects homeomorphically into $X_1$.
위의 theorem B는 특히 중요한데, 만약 $\pi_1(M)$이 surface group $H$를 포함하고 있고, LERF라면, $M$이 virtually Haken임을 내포한다. 다시 말해서, surface group을 representing하는 immersed surface in $M$이 적절한 finite covering을 취하면, embedding으로 lift가 된다는 것.
자명하게 LERF는 RF보다 강한 조건이다. Theorem A,B는 LERF와 RF의 기하학적인 의미를 담고 있다. 보통 해석할 때, $\tilde{X}$는 universal cover를 염두해둔다. 이 경우, Residual finiteness는 다음과 같이 해석된다:
$\pi_1(X)$ is residually finite if and only if for every compact subset $C$ of $\tilde{X}$, there is some finite cover $X'\to X$ with $C$ projects homeomorphically.
만약 $X$에 어떤 geometric structure가 있다고 한다면, $X$의 sequence of finite covering $\tilde{X}_i$가 있어서, 점점더 그것의 universal cover $\tilde{X}$에 가까워진다, 수학적으로는 Gromov-Hausdorff converge한다고 볼 수 있다. Hyperbolic 3-manifold에서는 이것을 geometric convergence라고 부른다.
Examples
1. $M$: a Seifert fibered 3-manifold then $\pi_1(M)$ is LERF.
2. $M$: a hyperbolic 3-manifold then $\pi_1(M)$ is LERF. (Virtual Haken/Fibered Conjecture)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난이도가 킬러 몇개에 몰빵된 느낌이긴 하다만 지금까지 강x중에 10회>=1회>나머지순으로 어려운듯
-
작년 정시인원이 약대 760명 한의대 260명 수의대 180명 인원수가 많으면...
-
목동 갈 수도 있음 일단 내 공부 스타일은 구조독해형임 강민철이 잘 맞는
-
파본검사 해야하는거 아닌가 싶었는데 쌤들도 별말없고 주위 애들도 안하길래 저도 그냥 넘어갔네요..
-
기억이... 왔나여 님들아?
-
∀x(x∈A∪A^c) 모든 x는 A 또는 A^c에 속한다 A=(이세상)...
-
인강 강사 풀커리 타면서 독학으로 책 찬찬히 읽어 보며 공부하는 애들보다 못하는...
-
그래도 그냥 적성 맞는쪽 가는게 맞겠져?
-
만족을 위한 입시인가 성공이 만족인가? 만약 그렇다면 성공만 하면 모두 만족할 수...
-
수능이 뇌절급일 가능성이 높음 6평 수준보다는 확실히 많이 어려워야 국어 수학이...
-
라멘 전문점고고혓 10
냠냠 맛점
-
푸는 실모가 모자라서 사려하는데 해설강의 없이 풀만한가요??
-
문디컬 약대 6
여대 말고 되는데 있음?
-
ㅈ된게 맞는듯 ㅋㅋ
-
아수라일지라도 2
아수라일지라도 몇강까지 있어요? 총정리과제는 6주차까지 있길래 6강까지 있는줄...
우익수