Residual Finiteness
게시글 주소: https://orbi.kr/00069377875
Residually finite: For any nontrivial element $g\in G$, there is a subgroup $G_1$ of finite index in $G$ which does not contain $g$.
Locally extended residually finite (LERF): If for each finitely generated subgroup $H$ of $G$, for any element $g\in G - H$, there is a subgroup $G_1$ of finite index in $G$ which contains $H$ but not $g$.
Theorem A. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and covering group $G$. Then TFAE:
(1) $G$ is residually finite.
(2) If $C\subset\tilde{X}$ is a compact subset, then the projection map $\tilde{X}\to X$ factors through a finite covering $X_1$ of $X$ such that $C$ projects by a homeomorphism into $X_1$.
Theorem B. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and a covering group $G$. Then TFAE:
(1) $G$ is LERF.
(2) Given a finitely generated subgroup $H$ of $G$ and a compact subset $C$ of $\tilde{X}/H$, there is a finite covering $X_1$ of $X$ such that the projection $\tilde{X}/H\to X$ factors through $X_1$ and $C$ projects homeomorphically into $X_1$.
위의 theorem B는 특히 중요한데, 만약 $\pi_1(M)$이 surface group $H$를 포함하고 있고, LERF라면, $M$이 virtually Haken임을 내포한다. 다시 말해서, surface group을 representing하는 immersed surface in $M$이 적절한 finite covering을 취하면, embedding으로 lift가 된다는 것.
자명하게 LERF는 RF보다 강한 조건이다. Theorem A,B는 LERF와 RF의 기하학적인 의미를 담고 있다. 보통 해석할 때, $\tilde{X}$는 universal cover를 염두해둔다. 이 경우, Residual finiteness는 다음과 같이 해석된다:
$\pi_1(X)$ is residually finite if and only if for every compact subset $C$ of $\tilde{X}$, there is some finite cover $X'\to X$ with $C$ projects homeomorphically.
만약 $X$에 어떤 geometric structure가 있다고 한다면, $X$의 sequence of finite covering $\tilde{X}_i$가 있어서, 점점더 그것의 universal cover $\tilde{X}$에 가까워진다, 수학적으로는 Gromov-Hausdorff converge한다고 볼 수 있다. Hyperbolic 3-manifold에서는 이것을 geometric convergence라고 부른다.
Examples
1. $M$: a Seifert fibered 3-manifold then $\pi_1(M)$ is LERF.
2. $M$: a hyperbolic 3-manifold then $\pi_1(M)$ is LERF. (Virtual Haken/Fibered Conjecture)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅅㅂ 5년지났네 현장에서 본건데 **
-
남학생이 얼마나 있을까요? 졸업후 진로는 어떤가요? 혹시 들으신 얘기들 올려주시면 참고 하겠습니다.
-
신과 다른세상 2
1. 이세상은 존재한다 2. 존재하는것은 원인을 가진다 3. 이세상이 존재하는...
-
다리떨기 빌런 10
국어 읽을 때 주위에 다리 떠는 사람 있으면 집중력 바로 깨지는데 이거 저만 그런...
-
홍대 인문 오후 1
문제 기억 나시는분??
-
이감 6-2 2
현역 재수 포함 인생 처음 받아보는 점수 나오고 바로 유기함
-
123일차
-
공감되서 공유함 2
https://youtu.be/TCPGh0LRO9U?si=WSUb4MHWz_OLXH5l
-
공식조직이면서 자발적결사체일수그 있나요? 저는 가입과 탈퇴의 자유로움으류 구분했었는데 흠.
-
22번 28번 동시에 풀맞한거 오랜만임
-
고고고
-
일반사회는 멋없는데 쌍윤 쌍사 쌍지 이런거 고정 50뜨면 전문가 같아서 ㅈㄴ멋있음;;
-
오늘도 내일도 통번 릴레이... 야바이... 이를 우야노... ㅡㅡ
-
92점 15,22틀 21번에서 시간 많이 써서 22를 못건드림 ㅠ 15는 문제보고...
-
강대 k모고 vs 이감수학 어떤게 오프퀄이 더 좋나요?
-
내가 드래곤 만나고 올게 그냥 그게 빠르겠다
-
사탐은 이런 소재를 주로 공부하는 건가? 엄청 어려울 듯
-
ㅈㄱㄴ
우익수