함수열, 균등수렴, 점별수렴
게시글 주소: https://orbi.kr/00069376922
리만 적분, 코시 적분, 다르부 적분, 르베그 적분, 스틸체스 적분
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
드릴5 드크북 설맞이 풀었는데 실모랑 병행할 N제 추천해주세요! 낮은 1등급 나옵니다
-
메가스터디 소환 1
강평
-
아주 지랄났군 0
중간고사 대비랑 수능을 같이하다니 현역때도 안한짓을 대학에서 해보네
-
지구 망해라
-
2023년인데 2년 전으로 느껴지고 2024년이 과거같음 ㅋㅋㅋ
-
왜아직도백분위가없노
-
강k 7회 풀면서 틀린 문제 갯수 = 고1~ 현 9모까지 틀린 교육청, 평가원 틀린...
-
오르비
-
작년 제외 99로 도배?
-
올해 6,9평 2
출제한 사람들 똑같나요 아니면 변화 있었나요??
-
간단한 기하 문제입니다 개념 하나만 알면 바로 풀립니다 난이도 : 1.5/5
-
대성 올해강의 1
대성패스 끊어놓고 다운로드해두면 내년에도 볼수있음...? 중간고사 끝나고 올해꺼...
-
막전위 유형이란, 여러분이 가장 먼저 접하게 될 킬러 유형입니다. 다른 말로는 신경...
-
갈릴레오 2
갈릴레오 피가로~
추억이네요
수학과이신가요>??
아뇨 그냥 예전에 했었어요 AP하다가 재밌어서
르벡 적분 측도 까지 공부했던 기억이 있어서
AP 준비하시면서 그렇게 깊게까지 공부하시다니... 대단하시네요
고3 만큼 갑자기 공부하고 싶은 순간이 없어서ㅋㅋ

각 함수가 연속함수인 함수열은 모든 점에서 불연속인 함수로 수렴할 수 없다O/X
O인가요? 사실 아직 여기까진 교수님께서는 진도가 안 나가서 ㅋㅋㅋ
O에요
당연히 한 점에서 불연속인 함수로는 수렴할 수 있지만, 수렴한 함수의 연속점의 집합은 실수 전체에서 조밀해야 되요
증명은 길이가 최소 한페이지...
알듯할 것 같기도 하네요
기말 때 uniformly convergence 배우면 아마 이 증명을 보게 되겠죠?
integrablility도 보장되나요 그러면?
사실 위상수학하면서 배운 내용이라, 그냥 uniform convergence 이야기만 하는 거면 이런 건 안나올 거에요. 최소한 nowhere dense, Baire set의 개념은 알아야 증명할 수 있어서...
그리고 적분가능성은 아마 보장 안될거에요
리만 적분을 하려면 연속인 점이 dense할 뿐만 아니라, 불연속인 점이 측도 0이어야 되니까