Curl-Div
게시글 주소: https://orbi.kr/00069376678
Curl-Divergence lemma라고 함수열의 수렴에 대해서 이야기 하는데 희한하게도 Curl과 Divergence에 bound를 주는 것을 가정으로 하고 있다. 직관적으로 이게 어떻게 연관되어 있는지 잘 와닿지 않는데, 일단 statement 먼저 보자.
The Curl-Div lemma. Suppose $u_m\rightharpoonup u, v_m\rightharpoonup v$ weakly in $L^2(\Omega;\Bbb R^3)$ on a domain $\Omega\subset\Bbb R^3$ while the sequences $\operatorname{div} u_m$ and $\operatorname{curl} v_m$ are relatively compact in $H^{-1}(\Omega)$. Then for any $\varphi\in C^\infty_0(\Omega)$ we have
$$\int_{\Omega}u_m\cdot v_m\varphi dx\to\int_{\Omega}u\cdot v\varphi dx$$
as $m\to\infty$.
여기서 나오는 $\cdot$ 은 Euclidean space에서의 내적을 의미한다. Statement의 의미를 다시 말하면, 미분에 bound를 줘서 nonlinear expression 의 weak continuity를 얻어내는 것이다.
이걸 differential form의 언어로 바꿔서 표현을 하기 시작하면, 이 curl과 div에 boundness 조건을 주는 것이 weak convergence에 어떤 영향을 주는지 좀 더 직관적으로 드러난다.
$M$을 closed oriented smooth $n$-manifold라고 하자. 이제 $u_m\rightharpoonup u, v_m\rightharpoonup v$ in $L^2$ such that $(d^* u_m), (dv_m)$ 들이 $H^{-1}$에서 relatively compact라고 하자. 이 조건은 위의 Curl-Div lemma에서 Curl과 Div의 relative compactness와 대응된다. $u_m, v_m$을 $u_m - u, v_m - v$로 바꿔서, $u = 0, v = 0$으로 가정할 수 있다. 그러면 Hodge decomp.에 의해,
$$u_m = da_m + d^* b_m + c_m,$$
$$v_m = df_m + d^* g_m + h_m,$$
where $c_m,h_m$ are harmonic 1-forms and $a_m \rightharpoonup 0, b_m \rightharpoonup 0, f_m \rightharpoonup 0, g_m \rightharpoonup 0$ in $W^{1.2}(M)$, $c_m \rightharpoonup 0, h_m \rightharpoonup 0$ in $L^2(M)$ 이런 것을 얻을 수 있다.
Hodge decomp.의 consequence중 하나가 $M$위에서의 space of harmonic 1-form들의 공간은 locally compact이다. 따라서, smooth하게 $c_m \to 0$, $h_m \to 0$ 된다. 또한 가정에 의해서 $\Delta a_m = d^* u_m, \Delta g_m = dv_m$이 $H^{-1}$에서 relatively compact이기 때문에, $(da_m),(d^* g_m)$은 $L^2$에서 precompact하게 들어가있다. 따라서,
$$u_m = d^* b_m + o(1),\quad v_m = df_m + o(1),$$
in $L^2$가 된다. 또한,
$$\langle u_m,v_m\rangle_g \omega_g = \ast (\langle d^*b_m, df_m\rangle_g) = (d\ast b_m)\wedge df_m = d((\ast b_m)\wedge df_m),$$
임을 알 수 있다. 여기가 그 "미분"의 모습이 드러나는 핵심적인 부분이다.
구체적으로 말하진 않겠지만, Rellich theorem 이라는 것이 있는데, 이것은 $b_m\to 0$ in $L^2$임을 imply한다. 따라서
$$\int_M \langle u_m,v_m\rangle_g\varphi\omega_g = \int_M d((\ast b_m)\wedge df_m)\varphi + o(1) = (-1)^n \int_M (\ast b_m)\wedge df_m\wedge d\varphi + o(1) = o(1).$$
따라서 앞선 Curl-Div lemma와 같은 결론을 낸다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
댓 ㄱㄱ
-
서울대 의대 1학년 2학기 수강신청 '0명'…"사실상 유급 확정" 3
[데일리안 = 허찬영 기자] 서울대 의대가 정부의 휴학 승인 불허 방침에도...
-
미적분 7
24. 매개변수 t로 나타내어진 곡선 x = lnt + 2t y = e^t + 2t...
-
문화 병존이 외부 문화 요소가 정체성을 유지한 채 독자적으로 존재한다고 해설하셨는데...
-
마치 어떤 임계점을 넘은 것처럼 발을 신발에 넣었을 때 에이징이 체감되면서 신기...
-
시험이 어려워서 그런가
-
4규 설맞이 1
이번 9모 공통 1틀입니다 점수는 84고 확통에서 3개 날라갓습니다 공통 4규랑...
-
2025학년도 정시 전형 - 동국대, 건국대, 홍익대 2
나무아카데미입니다! 어느덧 수능이 두 달도 채 안 남은 가을이 왔습니다....
-
총정리과제 독서 리트 지문들 꼭 풀어봐야할까요? 계속 풀어보곤 있는데 기출 풀때랑...
-
안녕하세요. 두 번째 칼럼으로 찾아뵙습니다. 사실 칼럼 소재를 선정하면서도 많은...
-
근과계수관계 이용해서 푸는거 맞나요
-
가끔보면 좀 억지스러운 정답이 있는거 같은데 기분탓인지 모르겠네요
-
아님 정의되지 않음?
-
흠.. 클낫노
-
여려분 괜찮아요 13개월 뒤면 다시 수능이 찾아와요 1
라고 마음편하게 올해 수능치는게 실제 점수 향상에 도움될수도 있어
-
1.이번 10모 치고 자퇴하면 내년 6평 응시 가능한가요? 2.10모 치고 바로...
-
"등속도 원운동" 10
놀랍게도 국어 ebs에 잇엇던 말 ㅋㅋ
-
80점맞았는데 수능이었으면 2등급 가능한 점수있가요?
첫번째 댓글의 주인공이 되어보세요.