Curl-Div
게시글 주소: https://orbi.kr/00069376678
Curl-Divergence lemma라고 함수열의 수렴에 대해서 이야기 하는데 희한하게도 Curl과 Divergence에 bound를 주는 것을 가정으로 하고 있다. 직관적으로 이게 어떻게 연관되어 있는지 잘 와닿지 않는데, 일단 statement 먼저 보자.
The Curl-Div lemma. Suppose $u_m\rightharpoonup u, v_m\rightharpoonup v$ weakly in $L^2(\Omega;\Bbb R^3)$ on a domain $\Omega\subset\Bbb R^3$ while the sequences $\operatorname{div} u_m$ and $\operatorname{curl} v_m$ are relatively compact in $H^{-1}(\Omega)$. Then for any $\varphi\in C^\infty_0(\Omega)$ we have
$$\int_{\Omega}u_m\cdot v_m\varphi dx\to\int_{\Omega}u\cdot v\varphi dx$$
as $m\to\infty$.
여기서 나오는 $\cdot$ 은 Euclidean space에서의 내적을 의미한다. Statement의 의미를 다시 말하면, 미분에 bound를 줘서 nonlinear expression 의 weak continuity를 얻어내는 것이다.
이걸 differential form의 언어로 바꿔서 표현을 하기 시작하면, 이 curl과 div에 boundness 조건을 주는 것이 weak convergence에 어떤 영향을 주는지 좀 더 직관적으로 드러난다.
$M$을 closed oriented smooth $n$-manifold라고 하자. 이제 $u_m\rightharpoonup u, v_m\rightharpoonup v$ in $L^2$ such that $(d^* u_m), (dv_m)$ 들이 $H^{-1}$에서 relatively compact라고 하자. 이 조건은 위의 Curl-Div lemma에서 Curl과 Div의 relative compactness와 대응된다. $u_m, v_m$을 $u_m - u, v_m - v$로 바꿔서, $u = 0, v = 0$으로 가정할 수 있다. 그러면 Hodge decomp.에 의해,
$$u_m = da_m + d^* b_m + c_m,$$
$$v_m = df_m + d^* g_m + h_m,$$
where $c_m,h_m$ are harmonic 1-forms and $a_m \rightharpoonup 0, b_m \rightharpoonup 0, f_m \rightharpoonup 0, g_m \rightharpoonup 0$ in $W^{1.2}(M)$, $c_m \rightharpoonup 0, h_m \rightharpoonup 0$ in $L^2(M)$ 이런 것을 얻을 수 있다.
Hodge decomp.의 consequence중 하나가 $M$위에서의 space of harmonic 1-form들의 공간은 locally compact이다. 따라서, smooth하게 $c_m \to 0$, $h_m \to 0$ 된다. 또한 가정에 의해서 $\Delta a_m = d^* u_m, \Delta g_m = dv_m$이 $H^{-1}$에서 relatively compact이기 때문에, $(da_m),(d^* g_m)$은 $L^2$에서 precompact하게 들어가있다. 따라서,
$$u_m = d^* b_m + o(1),\quad v_m = df_m + o(1),$$
in $L^2$가 된다. 또한,
$$\langle u_m,v_m\rangle_g \omega_g = \ast (\langle d^*b_m, df_m\rangle_g) = (d\ast b_m)\wedge df_m = d((\ast b_m)\wedge df_m),$$
임을 알 수 있다. 여기가 그 "미분"의 모습이 드러나는 핵심적인 부분이다.
구체적으로 말하진 않겠지만, Rellich theorem 이라는 것이 있는데, 이것은 $b_m\to 0$ in $L^2$임을 imply한다. 따라서
$$\int_M \langle u_m,v_m\rangle_g\varphi\omega_g = \int_M d((\ast b_m)\wedge df_m)\varphi + o(1) = (-1)^n \int_M (\ast b_m)\wedge df_m\wedge d\varphi + o(1) = o(1).$$
따라서 앞선 Curl-Div lemma와 같은 결론을 낸다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제헌이 6
마약 DnT 일타삼피 일격필살 포카칩 칸타타 정병훈 정병호의 슈퍼파워 티오피 Bin...
-
서킷 좋나여
-
2개가 배송왔다 뭐지?
-
내신 이미 버려서 평균 4점중후반이고 수시재수생각없음 하루만 밤새고 등교하는거는 것도 비추인가요??
-
시험지가 나쁜걸로 그냥 부족한 부분만 체크하고 넘어가야지
-
3년동안 달렸더니 슬슬 체력이 딸림 수능 끝나면 연애도 하고,, 친구도 만들고,,...
-
재앙인가요?
-
심심하당 3
월즈도 밤에 하고 공부는 아까까지 해서 좀 쉬고싶고 오르비는 글 리젠이 안돼
-
∀x (x ∈ A ∪ A^c) -> ∀x (E(x)) E(x)는 x가 존재한다는 의미
-
적분을 안가르치고 풀린다고?
-
하시는데 평균 성적 44433에서 수능 34322 or 34323정도는 40일...
-
두각 1층에서 분쟁 해결중ㄷㄷㄷ
-
경제와 미적분, 한계효용 derivative : 도함수수정 : 미분이라는 ~> 도함수라는
-
미적분 왤케 비슷한 접근법 계속 쓰는 느낌이지 시즌2 미적분이 특히 그럼 공통은 잘...
-
탐구실모도쳐야하는데 엉엉
-
교수 놈들 무슨 저작권 명목으로 시험문제 공개도 안 하고 문제 매년 똑같이 내는 거...
-
고민중
-
퀸쿠아트리아 2
수능 얼마 안남았는데 내일 부스운영 해야해서 준비중입니다 ㅋㅋ.. 다들 바쁘실텐데...
-
점수가 부끄럽네 잠시 실모를 내려 놔야겠음
-
현대소설:만세전 고전소설:유씨삼대록 현대시:거울 고전시가:관동별곡
첫번째 댓글의 주인공이 되어보세요.