Curl-Div
게시글 주소: https://orbi.kr/00069376678
Curl-Divergence lemma라고 함수열의 수렴에 대해서 이야기 하는데 희한하게도 Curl과 Divergence에 bound를 주는 것을 가정으로 하고 있다. 직관적으로 이게 어떻게 연관되어 있는지 잘 와닿지 않는데, 일단 statement 먼저 보자.
The Curl-Div lemma. Suppose $u_m\rightharpoonup u, v_m\rightharpoonup v$ weakly in $L^2(\Omega;\Bbb R^3)$ on a domain $\Omega\subset\Bbb R^3$ while the sequences $\operatorname{div} u_m$ and $\operatorname{curl} v_m$ are relatively compact in $H^{-1}(\Omega)$. Then for any $\varphi\in C^\infty_0(\Omega)$ we have
$$\int_{\Omega}u_m\cdot v_m\varphi dx\to\int_{\Omega}u\cdot v\varphi dx$$
as $m\to\infty$.
여기서 나오는 $\cdot$ 은 Euclidean space에서의 내적을 의미한다. Statement의 의미를 다시 말하면, 미분에 bound를 줘서 nonlinear expression 의 weak continuity를 얻어내는 것이다.
이걸 differential form의 언어로 바꿔서 표현을 하기 시작하면, 이 curl과 div에 boundness 조건을 주는 것이 weak convergence에 어떤 영향을 주는지 좀 더 직관적으로 드러난다.
$M$을 closed oriented smooth $n$-manifold라고 하자. 이제 $u_m\rightharpoonup u, v_m\rightharpoonup v$ in $L^2$ such that $(d^* u_m), (dv_m)$ 들이 $H^{-1}$에서 relatively compact라고 하자. 이 조건은 위의 Curl-Div lemma에서 Curl과 Div의 relative compactness와 대응된다. $u_m, v_m$을 $u_m - u, v_m - v$로 바꿔서, $u = 0, v = 0$으로 가정할 수 있다. 그러면 Hodge decomp.에 의해,
$$u_m = da_m + d^* b_m + c_m,$$
$$v_m = df_m + d^* g_m + h_m,$$
where $c_m,h_m$ are harmonic 1-forms and $a_m \rightharpoonup 0, b_m \rightharpoonup 0, f_m \rightharpoonup 0, g_m \rightharpoonup 0$ in $W^{1.2}(M)$, $c_m \rightharpoonup 0, h_m \rightharpoonup 0$ in $L^2(M)$ 이런 것을 얻을 수 있다.
Hodge decomp.의 consequence중 하나가 $M$위에서의 space of harmonic 1-form들의 공간은 locally compact이다. 따라서, smooth하게 $c_m \to 0$, $h_m \to 0$ 된다. 또한 가정에 의해서 $\Delta a_m = d^* u_m, \Delta g_m = dv_m$이 $H^{-1}$에서 relatively compact이기 때문에, $(da_m),(d^* g_m)$은 $L^2$에서 precompact하게 들어가있다. 따라서,
$$u_m = d^* b_m + o(1),\quad v_m = df_m + o(1),$$
in $L^2$가 된다. 또한,
$$\langle u_m,v_m\rangle_g \omega_g = \ast (\langle d^*b_m, df_m\rangle_g) = (d\ast b_m)\wedge df_m = d((\ast b_m)\wedge df_m),$$
임을 알 수 있다. 여기가 그 "미분"의 모습이 드러나는 핵심적인 부분이다.
구체적으로 말하진 않겠지만, Rellich theorem 이라는 것이 있는데, 이것은 $b_m\to 0$ in $L^2$임을 imply한다. 따라서
$$\int_M \langle u_m,v_m\rangle_g\varphi\omega_g = \int_M d((\ast b_m)\wedge df_m)\varphi + o(1) = (-1)^n \int_M (\ast b_m)\wedge df_m\wedge d\varphi + o(1) = o(1).$$
따라서 앞선 Curl-Div lemma와 같은 결론을 낸다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ..
-
수꼭필 상하 끝나면 사설로 넘어갈거같은데 두분중에 누가 더 좋을까요 미적이고...
-
40일 1
자살
-
옥린몽 어려우면 5
듄탁해 강의 들으셈 전체 줄거리 권별로 설명 개잘해주심 강의도 2시간인가 3시간인가 짧음
-
싸우면 누가이김?
-
문제 하나를 집중해서 못풀게할정도로 ㅈㄴ 방해됨 국어 시간 재서 풀려고하는데 콧물...
-
[배포예정]올수능 비문학 지문과 문제구조 동일성에대해. 6
베라 쌤입니다. 올해 6,9평의 지문구조 문제구조 동일성에 알려드리고, 올해...
-
https://orbi.kr/00069301993/%EC%98%81%EC%96%B4%...
-
국어 연계지문 0
6,9모에 나왔던 연계지문들 수능에 안나오겠죠??
-
작년거 시즌2 풀고 있는데 타율 4할~7할 나옴 난도 평가원으로 치면 어느정도??
-
1페부터 시간 엄청 먹더니 3페 중반부 풀다 끝남 3페 막풀다가 싹틀리고 걍 난리남...
-
돈까스요
-
∀x(x∈A∪A^c) A=이세상 A^c=이세상이 아닌 세상 . x드래곤이라고...
-
겸양vs시제 2
그래서 뭐가 맞다는 쪽이 우세한가요? 참고로 전 시제
-
국평타 수학 그나마 잘함 영 평타 사문 평타 한지 못함 사탐런x 문돌이
-
92의 벽 10
-
국어 > [상상국어 모의고사 시즌4 4] 공통, 화작 > [수능특강 독서] 2부...
첫번째 댓글의 주인공이 되어보세요.