항등식을 적분하면 항등식인가요?
게시글 주소: https://orbi.kr/00069372663
어떤 f(x) = g(x)라는 항등식을 부정적분하면 F(x) = G(x) + C가 될텐데 이 식도 여전히 모든 x에 대해 성립하는 항등식인가요?
그리고 여기서 C값은 적분상수니까 정해져 있는 값으로 봐야하는 건가요?
제 고민은 F와 G를 구간에 따라 C값을 다르게 정의하면 안되는 건가요? 그러니까
F(x) = G(x) + 2 (0 < x <= 2)
F(x) = G(x) + 4 (2 < x <= 4)이런 식으로 정의해도 여전히 F,G의 도함수인 f,g는 같으니까 상관없는 거 아닌가요?? ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
빨리 만능피로해제 물약 개발해주셈 의약뱃님들
-
특모 시즌1,2랑 비슷한 난이도로
-
다시푸는데 작년에 어케다맞았지
-
제시문에서 하라는거 다 하고 남으면 약간 배경지식 추가해서 더 적어도 되나요?_?...
-
머리도 아프고 컨디션이 안좋아서 좀 많이잤네요… 그냥 졸린거면 카페인먹고 버티는데...
-
부작용: 사람이 염세적으로 바뀜
-
ㅈㄱㄴ
-
강기본 듣기 시작했어요 끝나면 강기분 이어서 하려는데 빠르게 올리는 효과적인 방법 있을까요?
-
뭔 자꾸 모든 것(드래곤 포함)은 A 또는 not A 이 지랄이야 우리 엄마가 두...
-
서바 13 0
22 풀수있을거 같은데 답안나와서 빡침 15 22 30 틀… 컷개높겠지
-
머라도 인증 하신분인가요
-
근데 희비 비율이 1:9 ㅠㅠ
-
이미지모의고사 7
어떤가요??
-
작년까진 나왔던걸로 아는데 올해는 없는건가요?
-
서시대 논술 3-a 에서 답 약분 잘못해서 틀림 얼마 깎임
-
1/4부터 1까지 적분때린게 1 1/8부터 1/2까지 적분때린게 1/2 1/16부터...
-
지1 질문입니다 4
식센모 블랙 시즌1 1회차 푸는데 다윈이 서태평양이고 타히티가 동태평양이라고...
-
4회에서 처음으로 45점 맞음 ㅜㅜ 기쁘다
-
카톡 이모티콘으로 손색이 없을 정도로..
네 맞습니다
사실 부정적분이 상수 차이만큼만 난다면 미분계수가 모든 점에서 같다는 건 자명하죠
부정적분일때만 성립함
사실 항등식이면 f=f 느낌인거라
적분해도 같죠
상관없긴한데요
그럼 F, G도 구간에 따라 달라져야해요
간단하게
f = g = 2x
F = x^2 + 1 라 했을때
G = x^2 +3 이면 C = -2고
G = x^2 +1 이면 C = 0이겠죠
위는 그냥 F, G를 형식상의 표현으로 봤을때 얘기고
문제 조건에 따라 만약 F, G를 미분가능한 함수로 봐야 한다면 F, G가 매끄러운 연속함수가 되게끔 상수 C를 맞춰야겠죠
그래서 일반적으로는 저렇게 상수 C가 구간에 따라 다르게 정의되는 경우는 문제에서 많이 못 본 것 같아요
그러면 질문하나만 드려도 될까요?
f'(x+p) = f'(x)라고 하면
양변을 적분하면 f(x+p) = f(x) + q라고 쓸 수 있을 텐데, 정확하게 하면 이 q값이 일정하지 않을 수가 있기 때문에 함수가 p만큼 반복되면서 y축으로 q만큼 일정하게 평행이동된다고 할 순 없는거죠?
문제에서는 일정하도록 조건을 주겠지만요..
f'이 정의되었으니 일단 f는 미분가능한 매끄러운 함수네요
그러면 크기가 p인 어떤 구간에서 f를 관찰한다고 생각해보죠
가장 쉬운 예시로 [0, p] 인 구간을 생각해도 괜찮아요(p가 양수일때) 그러면 [p, 2p]일때 f는 [0, p]의 f를 x축으로 p만큼 y축으로 q만큼 평행이동한거잖아요? 만약 이때 [p, 2p] 범위내에서 q가 다르다면 무조건 불연속이기때문에 q는 일정한 값일수밖에 없고 그건 q = f(p) - f(0) 일거에요.
이때 중요한건 개형이 완전히 똑같기 때문에 [2p, 3p]에서도 q = f(2p) - f(p) = f(p) - f(0) 으로 같을거고 연쇄적으로 반복되니 q는 무조건 일정한 수여야합니다
장황하게 얘기했지만 그냥 간단하게 말하면
a를 임의의 실수라 할때
a를 포함하는 어떤 열린구간에서
f(x+p) = f(x) + n (x <= a)
f(x+p) = f(x) + m (x > a)
라고 했을때
첫번째 식에 a를 대입(혹은 좌극한)하면
f(a+p) = f(a) + n
두번째 식에 a의 우극한을 취하면
f(a+p) = f(a) + m
가 됩니다. 이게 가능한 이유는 f(x)가 실수전체에서 미분가능한 함수이기 때문이죠
이때 두식의 양변을 빼주면
0 = n - m 이 됩니다.
즉 n = m입니다.
그래서 q는 단 하나의 수로밖에 정의될수 없습니다
ㅋㅋㅋ 저도 답글 쓴 다음에 오늘 아침에 생각해 보니까 f'에서 함숫값이 다 정의가 되니까 f는 미분가능한 함수고 그러니까 f는 연속함수더라구요. 그래서 p만큼씩 그래프 개형은 똑같으면서 연속이려면 q값이 하나로 나올 수 밖에 없더라구요.. 감사합니다..!!