항등식을 적분하면 항등식인가요?
게시글 주소: https://orbi.kr/00069372663
어떤 f(x) = g(x)라는 항등식을 부정적분하면 F(x) = G(x) + C가 될텐데 이 식도 여전히 모든 x에 대해 성립하는 항등식인가요?
그리고 여기서 C값은 적분상수니까 정해져 있는 값으로 봐야하는 건가요?
제 고민은 F와 G를 구간에 따라 C값을 다르게 정의하면 안되는 건가요? 그러니까
F(x) = G(x) + 2 (0 < x <= 2)
F(x) = G(x) + 4 (2 < x <= 4)이런 식으로 정의해도 여전히 F,G의 도함수인 f,g는 같으니까 상관없는 거 아닌가요?? ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
추합을 해드리면 2
어려우이
-
사유: 시간 모자랄 거 같으면 뇌에서 급격하게 도파민 터지면서 풀이속도가 미친듯이...
-
공하싫 8
-
정시러로써 내년 3월 교육청부터는 더이상 핑계를 댈 수가 없다.. 최소 국영수...
-
화작 3컷-> 목표 2컷 수학 2~3-> 목표 높2 영어 2 -> 목표 1 생지...
-
샀는데 안 써서 팔아요 거의 새거고 정말 그냥 눈으로 보면서 보기만 했어요 수2는...
-
이게 오르비지
-
상금: 5000XDK
-
국어 실모 추천 0
어떤 실모가 괜찮은가요?? 시간 분배하면서 전략 좀 짜보고 해보려구요...
-
큐브 근황 1
열심히 이벤트 하는데 처음 조금 줄더니 다시 수학 질문 수백개 쌓임 ㅋㅋㅋ 쌀먹충...
-
역, 이, 대우 4
왜 교육과정에 역, 대우는 있는데 이는 없을까
-
인기글 보고 1개 풀어 봤는데 일단 존나 안어려워서 좋네 6모랑 비슷한거 같은데...
-
그랬다면 1컷이 얼마나 될까요? 45?
-
92떴다 22 29 틀 캬캬
-
3점이랑 4점 두세개 빼고는 손못대서 울었음 근데 원래 실력인거같긴해요 빨더텅...
-
이게 근데 못 풀어서 80인거랑 실수 존나 해서 80인거랑 느낌이 다르네용 못 풀면...
-
지듣노 6
-
그냥 22번급 수1 수2 통합문제 내보라고 한건데 처음 나온 문제 소문항, 난이도...
-
강k 뭐지 진짜 7
12 13 14를 다 못 푼거는 올해 실모 120개 통틀어서 처음이노 아씨발왜이러지진짜
-
겨우 뚫었다 하하하하
네 맞습니다
사실 부정적분이 상수 차이만큼만 난다면 미분계수가 모든 점에서 같다는 건 자명하죠
부정적분일때만 성립함
사실 항등식이면 f=f 느낌인거라
적분해도 같죠
상관없긴한데요
그럼 F, G도 구간에 따라 달라져야해요
간단하게
f = g = 2x
F = x^2 + 1 라 했을때
G = x^2 +3 이면 C = -2고
G = x^2 +1 이면 C = 0이겠죠
위는 그냥 F, G를 형식상의 표현으로 봤을때 얘기고
문제 조건에 따라 만약 F, G를 미분가능한 함수로 봐야 한다면 F, G가 매끄러운 연속함수가 되게끔 상수 C를 맞춰야겠죠
그래서 일반적으로는 저렇게 상수 C가 구간에 따라 다르게 정의되는 경우는 문제에서 많이 못 본 것 같아요
그러면 질문하나만 드려도 될까요?
f'(x+p) = f'(x)라고 하면
양변을 적분하면 f(x+p) = f(x) + q라고 쓸 수 있을 텐데, 정확하게 하면 이 q값이 일정하지 않을 수가 있기 때문에 함수가 p만큼 반복되면서 y축으로 q만큼 일정하게 평행이동된다고 할 순 없는거죠?
문제에서는 일정하도록 조건을 주겠지만요..
f'이 정의되었으니 일단 f는 미분가능한 매끄러운 함수네요
그러면 크기가 p인 어떤 구간에서 f를 관찰한다고 생각해보죠
가장 쉬운 예시로 [0, p] 인 구간을 생각해도 괜찮아요(p가 양수일때) 그러면 [p, 2p]일때 f는 [0, p]의 f를 x축으로 p만큼 y축으로 q만큼 평행이동한거잖아요? 만약 이때 [p, 2p] 범위내에서 q가 다르다면 무조건 불연속이기때문에 q는 일정한 값일수밖에 없고 그건 q = f(p) - f(0) 일거에요.
이때 중요한건 개형이 완전히 똑같기 때문에 [2p, 3p]에서도 q = f(2p) - f(p) = f(p) - f(0) 으로 같을거고 연쇄적으로 반복되니 q는 무조건 일정한 수여야합니다
장황하게 얘기했지만 그냥 간단하게 말하면
a를 임의의 실수라 할때
a를 포함하는 어떤 열린구간에서
f(x+p) = f(x) + n (x <= a)
f(x+p) = f(x) + m (x > a)
라고 했을때
첫번째 식에 a를 대입(혹은 좌극한)하면
f(a+p) = f(a) + n
두번째 식에 a의 우극한을 취하면
f(a+p) = f(a) + m
가 됩니다. 이게 가능한 이유는 f(x)가 실수전체에서 미분가능한 함수이기 때문이죠
이때 두식의 양변을 빼주면
0 = n - m 이 됩니다.
즉 n = m입니다.
그래서 q는 단 하나의 수로밖에 정의될수 없습니다
ㅋㅋㅋ 저도 답글 쓴 다음에 오늘 아침에 생각해 보니까 f'에서 함숫값이 다 정의가 되니까 f는 미분가능한 함수고 그러니까 f는 연속함수더라구요. 그래서 p만큼씩 그래프 개형은 똑같으면서 연속이려면 q값이 하나로 나올 수 밖에 없더라구요.. 감사합니다..!!