항등식을 적분하면 항등식인가요?
게시글 주소: https://orbi.kr/00069372663
어떤 f(x) = g(x)라는 항등식을 부정적분하면 F(x) = G(x) + C가 될텐데 이 식도 여전히 모든 x에 대해 성립하는 항등식인가요?
그리고 여기서 C값은 적분상수니까 정해져 있는 값으로 봐야하는 건가요?
제 고민은 F와 G를 구간에 따라 C값을 다르게 정의하면 안되는 건가요? 그러니까
F(x) = G(x) + 2 (0 < x <= 2)
F(x) = G(x) + 4 (2 < x <= 4)이런 식으로 정의해도 여전히 F,G의 도함수인 f,g는 같으니까 상관없는 거 아닌가요?? ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어째서
-
재밌는문제 풀어보셈요(10.6)(3000덕)(+오타수정) 10
오늘문제는 어려워서 상금을 올려봤습니다 조금 생각이 필요한 정수문제입니다 난이도 :...
-
무서운 사실: 22년도 19수능 물로켓설이 존나 돌고 불수능 기원하는 사람이 많았다
-
김기혐t 기출 3점짜리만 들으면 수능때 몇등급인가요? 15
김기현 기출생각집 2,3점 수1 수2 확통 기출분석 3회독 하고 수능들어가면...
-
하니대갈끄니까~ 1
ㄹㅇ
-
문디컬 화작 3
고2 정시러이고 미적사탐 경한 목표인데 화작 해도 괜찮나요..? 공부량 최대한...
-
이감6-5 2
제일 말아먹었는데 다들잘봤다하네 …
-
아님 기괴한 컷이 나와버림 언매나 문학 둘 중 하나만 쉽게 나와도 독서 난이도 대비...
-
어제 받은게 이감수학2-4? 서바 18회 전국서바 13?회 강k24회 머풀지...
-
개쩌는 수학 4점문제 고민하다 깨달음을 얻고 푸는 꿈꿨는데 꿈꿀때는 내가 현실에서...
-
야 홍익대 1
나도 너 별로야...잘가라.
-
22보단 24 기조랑 비슷하겠죠?
-
문재인 전 대통령 경기도청 깜짝방문…김동연 지사와 회동 4
김 "경기도는 윤 정부와 다른 길 가"…문 "경기도가 선도하면 바람 일으킬 것"...
-
단절vs예방 0
존재 부재 ㅡ.ㅡ
-
시험지 누가 안냈는지 시험지 갯수 안맞는다고 퇴실을 안시켜준다
-
강의있는 n제나 실모 해설지 보고 납득되면 강의 안들음? 2
궁지에 몰린 3등급은 시간이없다
-
6-5 언제 나오나
-
부모님은 주말에 놀러가면서 맛있는 거 이모들이랑 먹고 오면서 나한텐 살 찌고 몸에...
-
그 쪽지는 너굴맨이 처리했으니 안심하라구! 따봉구리야 고마워~!
네 맞습니다
사실 부정적분이 상수 차이만큼만 난다면 미분계수가 모든 점에서 같다는 건 자명하죠
부정적분일때만 성립함
사실 항등식이면 f=f 느낌인거라
적분해도 같죠
상관없긴한데요
그럼 F, G도 구간에 따라 달라져야해요
간단하게
f = g = 2x
F = x^2 + 1 라 했을때
G = x^2 +3 이면 C = -2고
G = x^2 +1 이면 C = 0이겠죠
위는 그냥 F, G를 형식상의 표현으로 봤을때 얘기고
문제 조건에 따라 만약 F, G를 미분가능한 함수로 봐야 한다면 F, G가 매끄러운 연속함수가 되게끔 상수 C를 맞춰야겠죠
그래서 일반적으로는 저렇게 상수 C가 구간에 따라 다르게 정의되는 경우는 문제에서 많이 못 본 것 같아요
그러면 질문하나만 드려도 될까요?
f'(x+p) = f'(x)라고 하면
양변을 적분하면 f(x+p) = f(x) + q라고 쓸 수 있을 텐데, 정확하게 하면 이 q값이 일정하지 않을 수가 있기 때문에 함수가 p만큼 반복되면서 y축으로 q만큼 일정하게 평행이동된다고 할 순 없는거죠?
문제에서는 일정하도록 조건을 주겠지만요..
f'이 정의되었으니 일단 f는 미분가능한 매끄러운 함수네요
그러면 크기가 p인 어떤 구간에서 f를 관찰한다고 생각해보죠
가장 쉬운 예시로 [0, p] 인 구간을 생각해도 괜찮아요(p가 양수일때) 그러면 [p, 2p]일때 f는 [0, p]의 f를 x축으로 p만큼 y축으로 q만큼 평행이동한거잖아요? 만약 이때 [p, 2p] 범위내에서 q가 다르다면 무조건 불연속이기때문에 q는 일정한 값일수밖에 없고 그건 q = f(p) - f(0) 일거에요.
이때 중요한건 개형이 완전히 똑같기 때문에 [2p, 3p]에서도 q = f(2p) - f(p) = f(p) - f(0) 으로 같을거고 연쇄적으로 반복되니 q는 무조건 일정한 수여야합니다
장황하게 얘기했지만 그냥 간단하게 말하면
a를 임의의 실수라 할때
a를 포함하는 어떤 열린구간에서
f(x+p) = f(x) + n (x <= a)
f(x+p) = f(x) + m (x > a)
라고 했을때
첫번째 식에 a를 대입(혹은 좌극한)하면
f(a+p) = f(a) + n
두번째 식에 a의 우극한을 취하면
f(a+p) = f(a) + m
가 됩니다. 이게 가능한 이유는 f(x)가 실수전체에서 미분가능한 함수이기 때문이죠
이때 두식의 양변을 빼주면
0 = n - m 이 됩니다.
즉 n = m입니다.
그래서 q는 단 하나의 수로밖에 정의될수 없습니다
ㅋㅋㅋ 저도 답글 쓴 다음에 오늘 아침에 생각해 보니까 f'에서 함숫값이 다 정의가 되니까 f는 미분가능한 함수고 그러니까 f는 연속함수더라구요. 그래서 p만큼씩 그래프 개형은 똑같으면서 연속이려면 q값이 하나로 나올 수 밖에 없더라구요.. 감사합니다..!!