항등식을 적분하면 항등식인가요?
게시글 주소: https://orbi.kr/00069372663
어떤 f(x) = g(x)라는 항등식을 부정적분하면 F(x) = G(x) + C가 될텐데 이 식도 여전히 모든 x에 대해 성립하는 항등식인가요?
그리고 여기서 C값은 적분상수니까 정해져 있는 값으로 봐야하는 건가요?
제 고민은 F와 G를 구간에 따라 C값을 다르게 정의하면 안되는 건가요? 그러니까
F(x) = G(x) + 2 (0 < x <= 2)
F(x) = G(x) + 4 (2 < x <= 4)이런 식으로 정의해도 여전히 F,G의 도함수인 f,g는 같으니까 상관없는 거 아닌가요?? ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
헤헤
-
ㅈㄱㄴ
-
정시에 조금 더 집중하고있긴한데 자사고라 수시 완전 버리긴 아까워서 둘다...
-
다 쳐다보네;
-
이거 두개가 ㅈㄴ 빡센데... 모의고사 치면 항상 이거 두개에서 무조건 1개씩은...
-
어유야,,,;;
-
필수의료 패키지 진행완료 이제 의사 돈잘벌던 시대는 감 6
https://n.news.naver.com/article/020/0003625373...
-
[칼럼] 실수 줄이는 법(부제: 호머식 채점을 하면 안되는 이유) 15
[소개 및 성적인증] https://orbi.kr/00071877183 안녕하세요...
-
체점형같은 퍼즐문제 풀이법같은것도 다뤄주시나요
-
점심은 5
갈릭 쉬림프 샐러드 파스타
-
시즌이 나뉘어져있단걸 지금 알았네요 흔히 말하는 어려운 하사십이 시즌2인가요???...
-
우연히 봣는데 0
탁상 달력에 4월 4일 별표 3개 쳐놨던대 ㅋㅋㅋ
-
제가 다니는 학교(ㅈ반고)의 입학생이 경신고 입학생과 수준이 동일해도 정시 탄압...
-
뀨뀨 9
뀨우
-
근데 이건 무슨뜻임? 13
전에 대장내시경했는데 의사가 큰 병원가보라하시던데 왜 그러시는거임? 이럴거면...
-
교수님 불러도 되나요?
-
??
-
나보다 멍청해
-
밥먹고 커피한잔 0
거기에 연초 극락 가버려
-
선착순 8
점메추받음.
-
작년에 사문 지구했다가 지금 사문 한지 하는중인데 한지 외울게 너무많고 진짜 재미가...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 5천원 커피값에 미리 하나...
-
ㅈㄱㄴ
-
비트 죽이긴 하더라
-
아무리 많은 문제집을 풀어도 결국 돌고돌아 다시 보고 질릴때까지 보는 책같은거요
-
힘드넹 6
연하작용 힘든 어르신 한 분 밥드리는데 70분씩 걸리니..참
-
하지만 인생에서 생기는 문제의 절반 넘게는 해결해주는 거 같다…
-
지금 다니는 대학이 이름도 과도 맘에 들어서 부모님한테 상의 안 하고 해야되나 싶은...
-
칸기견들은 6모가 3일 남아도 그냥 감 ㅇㅇ
-
어려운편인가요..? 평균 혹시 올려주시나요?
-
얼버기 2
6시에일어난거글못올려서지금올림
-
퇴직 4년 반 남았다하심 충격먹음 행장급되긴 힘든가
-
아무래도 만족이 안됨….
-
추론력이 빠른 오르비언이면 왜인지 알거임...
-
인선 set01 22번 같은 거 넘 재밋네요 … 수능수학은 역시 중독적이야
-
어휴 다행이다 0
수행이 뭐라고 이리 떨렸는지
-
골라줘
-
혹시 있을까요...... 좀 이상한 이유이긴 한데 강민철 선생님 개념 강의 볼...
-
바로 다담으로 기출 한번 더 돌릴까, n제나 수특으로 넘어가고 하반기에 다담으로 다시 상기시킬까
-
캬 숙소에서 아침먹고 지금 토스봤는데 돈이 들어왔네?!?!?!? 좌흥
-
한계야슬슬
-
대학입학후 5
부모님한테 용돈 안받고살고있음 근데 월급이 40..투잡 마렵네
-
ㅈㄴ 당황스럽네 차라리 돈을걷어라
-
하 시11발 작년에 미성년자라 못갔는데 올해는 6평 3일 전이라 못가네 ㅅㅂ ㅋㅋㅋㅋㅋ
-
이번달 교통대금 1
58,800원... 고딩때는 2만원대였는데 ㅠㅠ
네 맞습니다
사실 부정적분이 상수 차이만큼만 난다면 미분계수가 모든 점에서 같다는 건 자명하죠
부정적분일때만 성립함
사실 항등식이면 f=f 느낌인거라
적분해도 같죠
상관없긴한데요
그럼 F, G도 구간에 따라 달라져야해요
간단하게
f = g = 2x
F = x^2 + 1 라 했을때
G = x^2 +3 이면 C = -2고
G = x^2 +1 이면 C = 0이겠죠
위는 그냥 F, G를 형식상의 표현으로 봤을때 얘기고
문제 조건에 따라 만약 F, G를 미분가능한 함수로 봐야 한다면 F, G가 매끄러운 연속함수가 되게끔 상수 C를 맞춰야겠죠
그래서 일반적으로는 저렇게 상수 C가 구간에 따라 다르게 정의되는 경우는 문제에서 많이 못 본 것 같아요
그러면 질문하나만 드려도 될까요?
f'(x+p) = f'(x)라고 하면
양변을 적분하면 f(x+p) = f(x) + q라고 쓸 수 있을 텐데, 정확하게 하면 이 q값이 일정하지 않을 수가 있기 때문에 함수가 p만큼 반복되면서 y축으로 q만큼 일정하게 평행이동된다고 할 순 없는거죠?
문제에서는 일정하도록 조건을 주겠지만요..
f'이 정의되었으니 일단 f는 미분가능한 매끄러운 함수네요
그러면 크기가 p인 어떤 구간에서 f를 관찰한다고 생각해보죠
가장 쉬운 예시로 [0, p] 인 구간을 생각해도 괜찮아요(p가 양수일때) 그러면 [p, 2p]일때 f는 [0, p]의 f를 x축으로 p만큼 y축으로 q만큼 평행이동한거잖아요? 만약 이때 [p, 2p] 범위내에서 q가 다르다면 무조건 불연속이기때문에 q는 일정한 값일수밖에 없고 그건 q = f(p) - f(0) 일거에요.
이때 중요한건 개형이 완전히 똑같기 때문에 [2p, 3p]에서도 q = f(2p) - f(p) = f(p) - f(0) 으로 같을거고 연쇄적으로 반복되니 q는 무조건 일정한 수여야합니다
장황하게 얘기했지만 그냥 간단하게 말하면
a를 임의의 실수라 할때
a를 포함하는 어떤 열린구간에서
f(x+p) = f(x) + n (x <= a)
f(x+p) = f(x) + m (x > a)
라고 했을때
첫번째 식에 a를 대입(혹은 좌극한)하면
f(a+p) = f(a) + n
두번째 식에 a의 우극한을 취하면
f(a+p) = f(a) + m
가 됩니다. 이게 가능한 이유는 f(x)가 실수전체에서 미분가능한 함수이기 때문이죠
이때 두식의 양변을 빼주면
0 = n - m 이 됩니다.
즉 n = m입니다.
그래서 q는 단 하나의 수로밖에 정의될수 없습니다
ㅋㅋㅋ 저도 답글 쓴 다음에 오늘 아침에 생각해 보니까 f'에서 함숫값이 다 정의가 되니까 f는 미분가능한 함수고 그러니까 f는 연속함수더라구요. 그래서 p만큼씩 그래프 개형은 똑같으면서 연속이려면 q값이 하나로 나올 수 밖에 없더라구요.. 감사합니다..!!