항등식을 적분하면 항등식인가요?
게시글 주소: https://orbi.kr/00069372663
어떤 f(x) = g(x)라는 항등식을 부정적분하면 F(x) = G(x) + C가 될텐데 이 식도 여전히 모든 x에 대해 성립하는 항등식인가요?
그리고 여기서 C값은 적분상수니까 정해져 있는 값으로 봐야하는 건가요?
제 고민은 F와 G를 구간에 따라 C값을 다르게 정의하면 안되는 건가요? 그러니까
F(x) = G(x) + 2 (0 < x <= 2)
F(x) = G(x) + 4 (2 < x <= 4)이런 식으로 정의해도 여전히 F,G의 도함수인 f,g는 같으니까 상관없는 거 아닌가요?? ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 4
졸려
-
국어 강사 추천 10
지금 고2고 국어풀때 보통 그읽그풀로 푸는 편입니다. (구조독해로 푸는거 한번도...
-
말로는 설명 못하는 묘한 끌림이 있는 사람이 있단말야
-
2018 LEET 결혼을 하면 자연스럽게 아이를 낳지만, 아이들은 이 세상에...
-
3모 성적 = 수능 성적이다. 탐구 한두등급 오르는 정도. 오르는 학생은 진짜 극소수라고 봄.
-
이거 왜 다시 원래대로 안 바뀜? 진짜 모름
-
이럴 리 없어
-
수업이나촬영하자 14
하아...
-
관독에서 쪽지 3
보내볼까..
-
[국어 3모 33번] 본문을 최대한 직관적으로 읽는다면? 0
안녕하세요, 국생국사 현입니다. 손해설 글에서 언급했던 것과 같이 33번 문제에...
-
사실 잘하는 사람들은 다 자연스러울 듯요유동적으로 다항식을 세팅하자예제)f는...
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
아 거울봤는데 12
ㅈ빻았다 의대가야겠노 갈수있나
-
님들도 지금 방에 모기 들어옴? 아니 창문을 못 열겠노 방충망 뚫고 오는 건가
-
매해 점점 폐쇠적으로 변해가는 듯
-
다니는 독서실 (잇올같은데에요)에 좋아하는 딴 학교 분이..있는데 서로 친한 사이도...
-
ㅋㅋㅋ 3.5는 넘어야 제약회사 취업이 된다고? 우리과 3.5가 상위 40프론데.....
-
진짜 뇌가 굳었나 ㅜ...
-
누가 더 연애하기 쉽다고봄?
-
개화 지문 4
이거 그냥 눈알 굴리기로 푸는 지문 맞죠? 이해가 가능함?? 글이 ㅈㄴ 뚝뚝 끊김 ;;
-
어떤 질문이든 좋습니다
-
Kbs 좋아요? 8
그 애니메이션 진짜 효과적이긴함? 애니메이견 볼빠에 수특 몇번 더 본다는 소리가 있어서..
-
뭔 오르비야.. 0
공부나하자
-
국어 풀다가 막히는 순간이 올때 이 전략을 암기하고 잘 사용하도록 합시다. 핵심은...
-
겨울동안 뉴런 수분감했는데 이게 예상하던 점수가 아니라 (미적 72;;;하 ) 원래...
-
파마늘 2
-
그 각각의 사람에게서 나오는 분위기라는 게 있는 듯.. 나도 당장 정량 요소만...
-
1.이번년도 겨울 백화점에서 중년 부부가 향수 고르다가 나도 관심 있는 브랜드라...
-
앞으로 좀 더 떨어질 순 있는데 곧 다시 오를거임
-
전에 올렸던 문제들은 오류 조금씩 있는것 같던데 이건 제 생각에 없는것 같아용! 풀어바주세여
-
출산율은 근데 5
아무리 생각해도 애를 낳을 이유가 없음
-
작수 문과 만점자분은 가군에 왜 한양의 안쓰고 연치쓰셨는지 아시나요? 확통이라...
-
중세국어의 주격 조사에는 '이, ㅣ, ∅'가 있다는 것은 이제 중세국어를 공부한...
-
평가원은 학생이 새로 미지수 잡는거를 3개 이상 못하게 함 이게 수능 출제 매뉴얼에...
-
같이 몇마디씩 하는 애들은 많은데 깊게 친한 애는 거의 없음. 모르겠어. 주변인이...
-
핫식스 몬스터 종류 상관x 맛있는거 ㅊㅊ좀요
-
지2 컨사실분? 1
리바이벌 플로우 브릿지4회까지인가까지 받음 다구매하면 나진환책들, 지2유자분새책걍드림ㅇㅇ
-
6모까지 국수영만 파기 11
올 111 ”가능할까요?“
-
일반물리학 질문 2
스카이콩콩+사람 계의 역학적에너지를 구하라는데 챗지피티가 1/2*k*x^2-mgx로...
-
외모가 젤 중요한거 아님? 돈은 내가 잘살라고 버는거지 결혼 불가능 -> 결혼 가능...
-
뭐지 좀 무서움요
-
지구 1
작년에 오지훈쌤 들었는데 이훈식쌤으로 바꿔보고싶은데여 개념 강의는 볼륨이 좀 있어서...
-
암 고치는 종양외과 의사 되고싶음
-
네
-
난 사람이 아님ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 그냥 그대로 다 버릴각나오는거임 그냥
-
n수는 개추 일단 나부터
-
신체비율 3
위에부터 0:0:10:0ㄹ
-
둘중 뭐가 더 좋나요?
네 맞습니다
사실 부정적분이 상수 차이만큼만 난다면 미분계수가 모든 점에서 같다는 건 자명하죠
부정적분일때만 성립함
사실 항등식이면 f=f 느낌인거라
적분해도 같죠
상관없긴한데요
그럼 F, G도 구간에 따라 달라져야해요
간단하게
f = g = 2x
F = x^2 + 1 라 했을때
G = x^2 +3 이면 C = -2고
G = x^2 +1 이면 C = 0이겠죠
위는 그냥 F, G를 형식상의 표현으로 봤을때 얘기고
문제 조건에 따라 만약 F, G를 미분가능한 함수로 봐야 한다면 F, G가 매끄러운 연속함수가 되게끔 상수 C를 맞춰야겠죠
그래서 일반적으로는 저렇게 상수 C가 구간에 따라 다르게 정의되는 경우는 문제에서 많이 못 본 것 같아요
그러면 질문하나만 드려도 될까요?
f'(x+p) = f'(x)라고 하면
양변을 적분하면 f(x+p) = f(x) + q라고 쓸 수 있을 텐데, 정확하게 하면 이 q값이 일정하지 않을 수가 있기 때문에 함수가 p만큼 반복되면서 y축으로 q만큼 일정하게 평행이동된다고 할 순 없는거죠?
문제에서는 일정하도록 조건을 주겠지만요..
f'이 정의되었으니 일단 f는 미분가능한 매끄러운 함수네요
그러면 크기가 p인 어떤 구간에서 f를 관찰한다고 생각해보죠
가장 쉬운 예시로 [0, p] 인 구간을 생각해도 괜찮아요(p가 양수일때) 그러면 [p, 2p]일때 f는 [0, p]의 f를 x축으로 p만큼 y축으로 q만큼 평행이동한거잖아요? 만약 이때 [p, 2p] 범위내에서 q가 다르다면 무조건 불연속이기때문에 q는 일정한 값일수밖에 없고 그건 q = f(p) - f(0) 일거에요.
이때 중요한건 개형이 완전히 똑같기 때문에 [2p, 3p]에서도 q = f(2p) - f(p) = f(p) - f(0) 으로 같을거고 연쇄적으로 반복되니 q는 무조건 일정한 수여야합니다
장황하게 얘기했지만 그냥 간단하게 말하면
a를 임의의 실수라 할때
a를 포함하는 어떤 열린구간에서
f(x+p) = f(x) + n (x <= a)
f(x+p) = f(x) + m (x > a)
라고 했을때
첫번째 식에 a를 대입(혹은 좌극한)하면
f(a+p) = f(a) + n
두번째 식에 a의 우극한을 취하면
f(a+p) = f(a) + m
가 됩니다. 이게 가능한 이유는 f(x)가 실수전체에서 미분가능한 함수이기 때문이죠
이때 두식의 양변을 빼주면
0 = n - m 이 됩니다.
즉 n = m입니다.
그래서 q는 단 하나의 수로밖에 정의될수 없습니다
ㅋㅋㅋ 저도 답글 쓴 다음에 오늘 아침에 생각해 보니까 f'에서 함숫값이 다 정의가 되니까 f는 미분가능한 함수고 그러니까 f는 연속함수더라구요. 그래서 p만큼씩 그래프 개형은 똑같으면서 연속이려면 q값이 하나로 나올 수 밖에 없더라구요.. 감사합니다..!!