O/X 퀴즈(5000덕)
게시글 주소: https://orbi.kr/00069353671
f(0)=0, f(1)=1을 만족하는 [0,1]에서 [0,1]로의 연속함수 f(x)는, 0<x<1에서 (유리수, 유리수) 꼴의 점을 한 개도 지나지 않는 것이 가능할까?
정답은 ‘가능하다‘ 이다. 어려워 보이지만, 사실 무리수 기울기의 직선을 2개 이어붙이기만 하면 조건을 만족하는 f(x)를 쉽게 만들 수 있다. (유리수, 무리수) 꼴의 점에 대해 같은 질문을 한다면, y=x만으로도 조건이 만족된다.
그렇다면 위의 조건을 만족하는 함수 f(x)가, (무리수, 무리수)꼴의 점을 지나지 않는 것은 가능할까?
조건을 만족하는 f(x) 제시 or 존재하지 않는다는 것을 증명하시는 분께 5000덕을 드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질받 0
사유는 심심해서..
-
킬캠 시즌2 0
킬캠 시즌2 3회 1컷 얼마정도 보시나요 중간에 시간 끌린 문제 때문에 84 떴는데
-
24시간동안 공부만하기 가능? 해본적잇는사람잇으면손좀
-
그거 진짜 뺨 맞아야함.. 지1 안 맞으면 차라리 화1이 그나마 나을 수도 있음.
-
현역인데 제가 쉬운 시험은 진짜 20분씩 남기면서 압도적으로 잘 푸는데 6평처럼...
-
위쪽 올라오니까 0
수능 냄새가 보통이 아니었구나
-
인생 조짐 15
하루에 대부분을 잠만자는중
-
우리 군에 스터디카페가 1개밖에 없음 근데 시험기간이라 중고딩들이 다 와서...
-
이라고 굳건히 믿는 중입니다
-
이건진짜임
-
밤에 볼 웹툰 추천좀 19
밤에 볼거라했다
-
찍맞 포함하면 76이고 찍맞 빼면 68인데 이정도면 등급컷 어떻게 되나요...?...
-
깔끔하기만 하면 괜찮을텐데
y좌표가 무리수면 x좌표가 유리수여야하지만, [0, 1] 내의 모든 무리수에 [0,1]내의 유리수를 짝지어주는 것은 불가능하므로 (집합 기수 차이) 존재 X

정확해요
먼말인지 이해못했어요과정이 좀 많이 틀렸네요…
문제 해석을 무리수 값을 가지지 않는다고 생각한듯
뭔가 수특에 있었던 무한집합의 크기비교가 생각나네요
유리수 무리수 집합크기가 달라서 대응이 안될거 같다는 추측을 조심스럽게 해봅니다
무리수 집합 크기가 유리수 집합 크기보다 크니까
(무리수,유리수)인 점이 ㅇㅅㅇ