하시발 이걸왜 못알아먹지
게시글 주소: https://orbi.kr/00069352914
∀x(x∈A∪A^c) 이 식은 참인데
"모든 x가 A또는 A^c에 속한다" 라는 의미고
이말은 모든x가 원소로서 존재해야한다는 말입니다
모든x에서 x는 무엇이든지 될수있고
모든것(x)이 우리세계(A)나 다른세계(A^c)에 존재한다
는 말입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 과학지문을 물리 화학 지문으로 내버려서 국어에서 이득보라는 평가원의 큰계획이시다(제발)
-
밑으로 흐르니까 눈물이 흐르는거 같아요.
-
어그로 ㅈㅅ.. 테일러가 생명공동체랑 생명 공동체 그자체를 구분한거 맞나요? 사설...
-
A하며 B하는것은, C를 보여주는 것이겠군. 이런 선지 구조는 보통 A하며 B하는게...
-
목표 높게잡고 열심히하고 다 좋은데 나를 알고 현실적으로 실행해야됨을 지난 5년간을 통해 깨달음..
-
뭐가 더 쉽냐의 경중을 가릴 수는 없음 다만 예체능 입시할 때의 정신적 스트레스가...
-
공부 관련 상담 받고 싶은데 누구한테 물어봐야하는지 모르겠어요 오르비에 계신...
-
수능 끝나고 다음날부터 서강훌 모드로 진입한다
-
국어의 모음조화는 기원적인 것인가? 혹은 몽골어족의 TR 조화 등의 주변 언어의...
-
예체능 소신발언 6
음미체 무시하는 거 걍 생각짧은 놈임 입시 준비해보면 이거 줫나게 어려움 근데 수학...
-
말이 되냐고 어떻게 한자릿수냐고 나 연경제 가고싶다고...
-
걍 시대인재는 국어를 내지 마라 ( = 한수가 한수했다) 57min 독서론 + 화작...
-
반수망하면 그렇게 정신승리 해도 될까요?
-
-중고나라, 벼룩시장, 고물 가게 등 오프, 온라인 경매장 판매 카드: 폐기...
-
더프 수학 3
10덮 찍맞없이 확통 92였는데 11덮 68뜰수가 있나요 풀다가 컨디션이 너무...
-
도서관 문 닫을때까지.
-
국제캠퍼스 뭔가 이상해보임 제국캠퍼스 ㅈㄴ 세보이는데
-
비상사태………
-
숭실숭실~ 이름보면 귀여워보이는데 숭카이를 접하면 가슴이 뜨거워짐
-
Seoul national education 어쩌구 박힌 과잠 입었을때...
-
이거 언제 다풀어 국어- 상상 절반, 문실정 5개, E뮨 시즌 3,4 수학-...
-
예상 난도 13번이라는데 미분가능하도록 하려면 함수가 연속이어야 하니까 연속성으로...
-
ㅅㅂ 오렌지 다맞고 고전소설에서 하나 나갔네 뭔......
-
건동홍 버리고 왔는데 돈없어도 상경했어야했나
-
머리아프다오 0
오늘은 실모를 풀지 않겠디지니
-
나 작년에 국민대랑 과기대 낮공 붙었는데 (재수는 확정이였지만 부모님이 그냥 함...
-
인간의 범주서 탈락해버린 짐승
-
예비 고2 이고 선택과목 2학년때 물화지 기하 생윤 3학년때 미적 언매 이고요...
-
탕 탕 후루후루~ 탕탕 후루루루루~
-
‘연세대 문제유출’ 논란 일파만파…소송·수사 이어 1인 시위 2
‘관리 부실의 책임을 학생에게 전가하지 말라.’ 4일 오전 서울 서대문구 연세대학교...
-
에서 "교" 자만 더한 학교가 맞음 전적대라서 어그로좀 끌어봄
-
박혀있던거 꺼내서 풀었는데 와 계산 ㅈ되던데 ㅋㅋㅋ 15 22 28 30 남기고...
-
강민철쌤 커리큘럼 탈 예정인데 독서는 마닳로 그냥 혼자서 독학하고 싶고 문학은...
-
탈급간 아님? 취업률도 그렇고 ㅇㅇ
-
오늘의 모닝 실모 결과 11
한수 파이널 7차: 87 이해원 파이널 1회:96 국어... 90점대가 실종됐다
-
오늘 밤샐거임 8
ㄹㅇ임
-
40분안에 풀기 가능인가요???
-
그뒤로 나락갔는데 수능때 커하 ㄱㄴ?
-
그냥 여친분 부러워ㅓㅓㅓㅓㅓㅓㅓㅓㅓㅓ
-
겨울 때 못들은 단과영상, 파이널단과 영상 찍어둔거 안들었는데 이거 아깝다고 들을...
-
22 30맞 20 9 틀....
-
ㄴ선지 ㄷ선지가 궁금한데요 ㄴ선지는 그림 A-B가 용융점(?)을 넘기기 못해서...
-
근데 서/연고도 4
연대 경영 성적으로 서울대 협문 못들어가지 않음? 고경은 몰루
-
60후반에서 80초 진동하는데 많이 풀기 전에 본 6모가 80점이었거든요.....
-
??
-
실력이 뒷받침되어야하는건 맞지만 요새 개인적인 일로 우울감이 많아졌는데 이게 하필...
-
연경제 고경제 둘 다 붙으면 어디 가실거임?
-
모고 문제도 해설도 답지도 뭔가 엉성해
틀리셨습니다. 현대 논리학에서 양화사 ∀x 를 포함하는 명제는 반드시 x의 존재성을 보장하지 않습니다. "모든 x에 대해 p이다" 라는 명제는 설령 x가 존재하지 않더라도 참이 될 수 있습니다
모든 x가 U에 속한다면, 모든x가 일단 원소로서 존재해야만 하는것 아닙니까?
아닙니다... 그 가정이 틀렸어요. 모든 x에 대해~ 라고 진술하는 명제는 반드시 x의 존재성을 가정하지 않습니다.
∀x(x∈A∪A^c) 이식은 참이라고 하던데요?
네 맞아요. 하지만 '모든 x'와 같이 양화사 ∀를 포함하는 명제는 x가 실존하지 않아도 참이 될 수 있습니다.
아니 제말을 잘들어봐주세요. "모든x가 U에 속한다" 가 참이라면 모든x가 원소로서 존재한다는 말이잖아요
아뇨.. 더 이상 그만 우기세요. 그 명제는 x의 존재 여부와 무관하게 항상 참인 명제입니다
아니 제말이 왜틀렸죠?
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
논리학에서 양화사 '모든' 은 반드시 그 대상이 존재해야만 참이 된다고 보지 않으니까요... 우선 존재해야만 한다<<<<이게 틀린 가정이라는 거에요.
∀x(x∈A∪A^c) 이식이 참이니까 x가 원소로 존재할수 밖에 없다고요
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
그게 아니라는겁니다. X의 존재 여부와 무관하게 모든 x라는 표현은 성립할 수 있어요. x가 존재해야만 모든 x라는 표현이 가능하다 보는건 고전 논리학의 관점입니다
x가 없으면 애초에 ∀x가 아닌데요
제말 왜곡하지마세요 모든x가 U에 속하므로 모든x가 원소로서 존재하는겁니다
이 사람 어그로입니다
먹이 주지 마십쇼 선생님
네 그렇게 생각하세요
"x가 없으면 애초에 ∀x가 아닌데요" 이말이 틀렸나요?
어떤원소가 없으면 모든원소라고 할수가 없는데
하.. 왜 그렇게 반응하시죠?
현대 논리학, 특히 20세기 이후의 논리학에서는 '존재'와 '양화'의 개념이 더 명확하게 구분됩니다. 현대 논리학에서의 전칭양화사(∀, "모든 x")는 존재를 직접적으로 가정하지 않습니다. 즉, "모든 x에 대해 P(x)가 참이다"라는 명제가 참이 되려면, 해당 범위 안에서 거짓이 될 수 있는 항목이 없다는 것만을 의미하지, 실제로 그 범위에 속하는 x가 존재해야 한다는 것을 의미하지는 않습니다.
특히 현대 수리논리학에서는 공집합과 같은 개념이 많이 등장하는데, 공집합에 대한 모든 명제는 자동적으로 참으로 간주됩니다. 예를 들어, 공집합에 속하는 모든 x에 대해 P(x)가 참이라는 명제는 공집합 안에 아무 것도 없기 때문에 참으로 간주됩니다. 이처럼 현대 논리학에서는 존재와 무관하게 양화사를 다루는 경향이 더 강합니다.
∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그리고 (모든x에 대해 x가 U에 속한다) 라고할때 어떤x가 없으면 (모든x)라고 할수도 없다고요
위에것도 gpt 답변인데요...
"공집합에 속하는 모든x" 이게 대체 뭔말이죠
잘 읽었습니다. 혹시 '어몽어스가 의심스럽다' 라는 명제도 증명해주실 수 있나요?
하나 더 지적하고 가겠습니다. A라는 집합을 우리 세계에 실존하는 대상이라고 잡았을 때, A^c는 말 그대로 A에 속하지 않는 모든 것이 될 수 있습니다. A^c에 속한다는 것이 반드시 다른 세계에 실존한다는 의미가 될 수 없죠.
A^c에 속한다는 것은 '우리 세계에 실존하는 대상이 아니다' 와 같은 의미가 되고, 여기에는 곧 소설 속 세계와 같이 우리 세계에 속하지만 상상에서만 존재하고 실존하지는 않는 대상들, 우리 세계와 다른 세계에도 없는 대상들, 우리 세계에만 없는 대상들...등등 말 그대로 우리 세계에 실존하지 않는 모든 것들이 들어갈 수 있습니다.
따라서 저 명제가 항상 참이고, 심지어 x가 존재한다 하더라도 그것이 항상 실제로 존재한다로 이어지지는 않습니다....
하........∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그 말은 맞지만 그것이 꼭 x의 존재성으로 이어지지도, 실존성으로 이어지는게 아닙니다.
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
전체집합은 말 그대로 '전체'이기에 님 마음대로 전체를 세계로 한정지으시면 안됩니다.
A가 우리세계고 A^c가 다른세계입니다
그런데 A에 속한다고 반드시 우리세계에 실존한다는건 아니잖아요? 해리 포터나 마블 영화 세계관은 우리 세계에 속하는 것이지만 실제로는 가상의 세계관인것처럼
해리포터가 진짜인 세계가 있을겁니다
해리포터가 진짜인 세계가 있을겁니다
넵!
제가 왜이렇게 고집피우고 난리치는지 이해하실거라 믿습니다
x가 존재한다는 가정이 문제인거 아닌가요? 논리학에 대해선 그리 많이 알지 못하지만 작성된 댓글을 보며 든 생각은 타당성과 건전성에 혼란이 있으신것 같은데... 주장하시는 논증은 타당하지만 x가 존재한다는 명제의 참이 보장되지 않으니 건전성에 결핍이 생기지 않나요? 존재하지 않는 x를 존재한다고 하는 명제의 참 거짓이 문제가 된다는것 같습니다
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
우리가 세계에서 관측불가한 것이 실존하다고 설정하신거라면 그리고 그것들이 전체집합내에 존재한다고 가정하신거라면 주장하시는 논증은 타당하다고 생각합니다. 다만 그것이 과학적으로 가치가 있는지는 모르겠습니다.
쿠쿠리 그저 신
님
1=2라면, 3=4이다. 참임 거짓임?
참요