수1 지로함수 미지수 세우는 개수
게시글 주소: https://orbi.kr/00069275726
대부분 문제에서는 미지수를 하나만 잡는데 가끔보면
미지수를 2개 잡는 문제가 있더라구요.
문제에서 어떤 조건이 있을때 미지수를 2개로 잡으면 편한건가요?
예를 들어서 이번 2025학년도 6월 모의고사 12번 문제가
미지수를 하나로 잡고 밀어버리는 것 보다, 두개로 잡고 푸는 경우가 더 쉬워 보이더라구요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언매 조금 하고 기출 조금 풀다 끝났어요
-
서바 10회 0
22틀 10틀 야발 ㅋㅋ
-
근데 덕코 5
얻다 쓸 수 있는 거예여?
-
39점 나왔음 ㅜㅜ 하 ㄹㅇ 금요일 더픈데 ㄹㅇ 걱정되네 사실 39점이 요새 본거중에 잘본거긴한데
-
- 현대시 이상 -> 자동기술법 - 현대 소설 마당 깊은 집 -> 인물관계 - 고전...
-
꼬맨 상처 10
17대 1로 싸워서 이김
-
흑흑
-
어중간하게 60% 공부 끝냈을때 방심하면 안돼는듯요 실제 시험에선 40%의 결과만...
-
문이과 모두 0
언매화작 확통미적기하 사탐9개 과탐8개 그냥 전부 필수로 해서 괴랄한 문제 없이도...
-
2목표이고 기출 정리 한번 하고 싶은데 양승진t 파이널코드랑 배성민t 카운터어택...
-
올해 6모 4번 0
어느 부분에서 공동체주의인 것을 알 수 있나요?
-
오 6
-
쉽고 자세하게 잘 돼있더라. 자주 쓰이는 실전개념도 나와있고.
-
북위도 장안만 있는게 아니라 더 있고 송나라도 카이펑 이후에 항저우로 간거 등등...
-
개원하고 느낀점 9
개원 나름 잘돼서 운영 잘하고있긴한데 많은 수험생이 왜 이걸 목표로 달려올까 싶을...
-
중고등학생들 ㅇㅇ
-
옯크아아악 12
-
노잼된건맞음.. 원래 이 화력이 아니야
미지수 하나로 식 세우려 머리 속 시뮬레이션 => 식이 복잡함 => 두개로 잡아야 겠는걸.
감사합니다.!!
뜬금없는 질문이지만, 이 문제에서 A를 굳이 미지수로 잡은 이유가 있을까요?
미지수를 안 세우고, 그낭 두 함수의 Y가 같다를 이용해서는 못풀어서 그런가요?
2022학년도 5모 입니다!
미지수를 잡는 이유는 문제 조건으로부터 구하고자 하는 문자가 포함된 등식을 얻어내기 위함입니다.
현재 문제에서 제시된 조건은
1. 점 A에서 두 그래프가 만난다.
2. OB = 3OH
3. H랑 A의 y좌표 같음
2번 조건의 OB와 OH를 a에 관하여 표현하려고 할 때, OB는 쉽게 표현되지만 OH는 그렇지 않습니다.
따라서 OH를 표현하기 위해 A의 좌표를 미지수로 잡는 것이 타당해 보입니다.
이후 1번 조건인 "만난다"로 등식 확보하고 OH를 표현한 후 연립하면 미지수 2개 식2개 구조로 마무리됩니다.
물론, 2번 조건을 이용해 1번 조건으로 마무리할 수도 있습니다. 즉, A의 좌표를 미지수로 잡지 않을 수도 있습니다.
OB는 매우 쉽게 a로 표현되므로 OH를 구해서 방정식을 푸는게 아닌, OH = 2^a/3 으로 정리 후에 OH는 a의 y좌표임을 이용하여 각 그래프에서 2^a/3에 대응하는 x좌표를 구하고 그 두 x좌표가 같다로 등식을 구성하여 마무리해도 됩니다.
2번 3번 조건을 이용한 후 1번 조건으로 마무리하는 구조네요.
중요한 것은 미지수를 어떻게 잡느냐, 몇 개를 잡느냐 보다 문제의 구조를 보는 안목입니다.

감사합니다 ㅜㅜㅜ살짝 덧붙이자면
y=2^x와 2^(-x+1)의 교점T가 있으면 x는 미지수로 잡는게 맞나요?
"교점"을 보고
"어떤 x에 대하여 치역이 같음"이라고 보면 어떤x 를 미지수로 잡고 "치역이 같다"로 등식을 세워서 어떤 x를 구할 수도 있고
"수식적으로 그래프1=그래프2의 실근이 교점의 x좌표"라고 보면 그냥 미지수 안잡고 방정식 벅벅 풀어서 교점 구할 수도 있고..
어떻게 해석하든 교점의 좌표는 구해짐
"아니 근데 특정 상황->미지수 잡기"
이거 하지 말라는게 윗 댓글의 요지잖아요!!!!
케바케라 보심 될 것 같아요