다항함수의 미분계수의 역수의 합 (feat. 240728)
게시글 주소: https://orbi.kr/00069099108
안녕하세요. 오르비에 글을 처음 써 봅니다.
어제 OnlineMathContest에서 열린 OMCB020에 참가했습니다. G번 문제 해설을 봤는데 처음 보는 공식이 나와서 공유하고자 이 글을 씁니다.
G번 문제는 다음과 같습니다.
구글 번역기로 번역해보면 다음과 같습니다.
실수 계수 3차 다항식 f(x)에 대하여 방정식 f(x)=0은 서로 다른 3개의 실수 해 p, q, r을 가지며 x=p, q에서 f(x)의 미분계수는 각각 9, -7이었습니다. 이때 x=r에서 f(x)의 미분계수를 구하십시오. 그러나 원하는 값은 서로소인 양의 정수입니다. a, b를 사용하여 a/b로 표현할 수 있으므로 a+b를 해답하십시오.
수능 문제 형태로 다시 써보면 다음과 같습니다.
삼차함수 f(x)에 대하여 방정식 f(x)=0은 서로 다른 3개의 실근 p, q, r을 가지며 f'(p)=9, f'(q)=-7이다. f'(r)=a/b일 때, a+b의 값을 구하시오. (단, a와 b는 서로소인 자연수이다.)
해설을 보면 별해가 있는데 다음과 같습니다.
0이 아닌 실수 c를 사용하여 로 나타낼 수 있다. 이때 x=p,q,r의 미분계수는
이다. 일반적으로 서로 다른 복소수 a,b,c에 대한 항등식
이 성립한다(통분함으로써 용이하게 확인할 수 있다). 따라서
그리고, 여기에서 이다. 일반적으로 중근이 없는 2차 이상의 다항식 근에서 미분계수의 역수의 합은 0이다.
검색해 봤더니 나무위키에 역수의 합에 관한 내용이 있었습니다. 공식은 다음과 같습니다.
n≥2이고 xi<xi+1(i=1,2,3,...,n-1)인 n차 다항함수에 대하여 다음이 성립한다.
증명은 여기를 눌러서 보세요.
예제를 직접 만들어 봤습니다.
예제1) 5차함수 f(x)와 서로 다른 실수 a,b,c,d,e에 대하여 f(a)=f(b)=f(c)=f(d)=f(e)=0이고, f'(a)=f'(e)=-6, f'(b)=f'(d)=24이다. f'(c)의 값을 구하시오.
풀이
예제2) 삼차함수 f(x)와 일차함수 g(x)=2x-1이 서로 다른 세 점 (a,f(a)), (b,f(b), (c,f(c))에서 만나고, f'(a)=5, f'(b)=0일 때, f'(c)의 값을 구하시오.
풀이
함수 h(x)를 h(x)=f(x)-g(x)라 합시다. h'(x)=f'(x)-g'(x)=f'(x)-2입니다. 방정식 h(x)=0은 서로 다른 세 근 a,b,c를 가지므로
입니다. 계산하면
입니다.
기출문제에 적용해서 풀어봅시다.
2024학년도 고3 7월 미적분 28번
(가) 조건에 의하여 g(0)=0=f(0), (나) 조건에 의하여 g(k)=k=f(k), g'(k)=1/3, f'(k)=3입니다. f(x)의 역함수가 존재하므로 f(x)는 증가함수입니다. f(x)의 그래프를 다음과 같이 그릴 수 있습니다.
p(x)=f(x)-x라 하면, p'(x)=f'(x)-1이고, p'(k)=f'(k)-1=2입니다. f'(x)≥0이므로 p'(x)≥-1입니다. 방정식 p(x)=0은 서로 다른 세 실근 0,b,k를 가지므로
입니다. p'(0)에 대하여 풀어주면
입니다. p'(b)=-1일 때, p'(0)은 최댓값 2를 갖습니다. 따라서 f'(b)=0일 때, f'(0)은 최댓값 3을 갖습니다.
f'(0)의 값이 최대일 때, f'(0)=f'(α)=3이므로 f(x)는 점 (α/2, f(α/2))에 대하여 점대칭입니다. b=α/2이므로 f'(α/2)=0입니다. 그래프를 다시 그려보면 다음과 같습니다.
f'(x)=3x(x-α)+3이고, 이므로 α=2입니다.
α=2를 대입하면 f'(x)=3(x-1)2이고, f(x)=(x-1)3+1입니다. f(3)=9, g(9)=3이므로
따라서
입니다.
2024/09/08 예제1에서 f(d)->f'(d)로 오타 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 하루하루는 왜 이리 놀라울 정도로 어려운 건데
-
어제 오자마자 곯아 떨어져서 까먹은...
-
이렇게 풀면 답이 안나오던데 이유가 뭘까요? ㅜㅜ
-
조건 다 해석했는데, 맨 마지막에 절댓값 F(x) < 1 이거때문에 좀 이상하네.....
-
우울증이 좀 많이 나아진듯 오늘 언제 잘진 모르겠는데 자고 일어나서부터는 다시...
-
정상화라고 쓰고 그냥 악깡버라고 읽으셈 레전드 리버스 패턴이였는데 바로 지금...
-
내 뇌 어떡해
-
밀봉력과 개봉편의성은 공존할 수 없는 것인가
-
과자깠던건 기억이 나는데 갑자기 5시임 ㅋㅋㅋ
-
저능충 1
사랑해♡
-
수학황 강림 기원... 서바 고난도문제 풀이 바랍니다 12
원래 전국서바 일케 팍팍하나요ㅠ 20번 문제인데 거의 22번느낌... 풀이...
-
쉬싸고옴 1
쫌만 기둘리라고~
-
밖에 아침이라고 새들 짹짹대고 잇네,,,,
-
야함 대물 자지 보지
-
잘자료 4
-
노추 27
노엘과 결혼하고싶음
-
다들 꾸준히 노추글 올려다오…
-
오늘은 죄송합니다...
-
수위 높으면 절대 안됨
-
오노추 4
이제 15년전 게임이네… 진짜 그립읍니다…
-
슬슬 오르비 0
화력 떨어지는거 느껴지면 개추
-
근데 안될걸 알음
-
아무나 가져가셈 10
뿌링클 씹극혐해서 걍 나눔함
-
지2 한 번 응시해봤는데 솔직히 개념만 대충 1주 하고 최근 기출 3개만 풀었는데...
-
엽떡 좋아하는 사람은 개팰거임
-
떡볶이 먹고싶다 9
엽떡 신전 프렌차이즈 말고 휴게소에서 파는 고추장맛 나는 떡볶이 이쑤시개로 찍어먹어야되는데…
-
아닌가
-
저처럼됨
-
절망의 크기와 눈물의 크기와 아무것도 안하고 먹은 나이밖에 없네
-
재미없는 연애랑 mbti 떡밥뿐이네
-
오나홀이라고 보여요 죄송합니다...
-
삶에 대한 즐거움도 미래에 나아질거 같은 희망도 전혀 보이지가 않는다 어딜 가도 다...
-
아직 안자는중 2
잠이 안와 오랜만에 새벽에 논다 히히
-
권성동 믿는다
-
안 쓰고 먼가ㅜ해버림 틀렸을 수도 있음
-
어캐받아줘야함
-
인류 역사상 최고의 간식이 아닐까
오.....
저걸 처음 생각해낸 사람은 도대체 뭘까
재밌는 성질 감사합니다