와진짜이풀이가맞나
게시글 주소: https://orbi.kr/00069001339
몇십분동안 고민해서 겨우겨우 낸 답은 맞았지만
풀이가 다르다
내 풀이에 오류가 있는 것 같다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그뒤로 나락갔는데 수능때 커하 ㄱㄴ?
-
그냥 여친분 부러워ㅓㅓㅓㅓㅓㅓㅓㅓㅓㅓ
-
겨울 때 못들은 단과영상, 파이널단과 영상 찍어둔거 안들었는데 이거 아깝다고 들을...
-
대 방 어 4
대 대 대
-
22 30맞 20 9 틀....
-
ㄴ선지 ㄷ선지가 궁금한데요 ㄴ선지는 그림 A-B가 용융점(?)을 넘기기 못해서...
-
근데 서/연고도 4
연대 경영 성적으로 서울대 협문 못들어가지 않음? 고경은 몰루
-
60후반에서 80초 진동하는데 많이 풀기 전에 본 6모가 80점이었거든요.....
-
??
-
실력이 뒷받침되어야하는건 맞지만 요새 개인적인 일로 우울감이 많아졌는데 이게 하필...
-
여산의 진면목이 여긔야 다 뵈는다 라는 문장을 보고 어떻게 여산이 중국의 산인걸 알수 있을까
-
이 성적 주면 받음? 11
갤러리 구경하다 발견함
-
연경제 고경제 둘 다 붙으면 어디 가실거임?
-
모고 문제도 해설도 답지도 뭔가 엉성해
-
전 라인 통틀어서 이 벽만큼 큰 라인은 솔직히 없음 상대적으로 다른 라인에 벽이...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
어떨때는 적게 자도괜찮아 어느때는 자도자도 피곤함
-
탈출하겠다는일념.
-
좋은가요 8시간정도?
-
국어 4 수학 5 탐구 11로 동홍이 된다고 누가 그러는데 ㅇㄱㅈㅉㅇㅇ????
-
11투스 4
다들 미적 난이도 어떤가요? 그냥 적당한거임?
-
251122 미리보기 11
22번 수1 내줬잖아 6,9평도 22번 수열냈으니까 통수아니지? 그치? 근데,...
-
명문은 연고까지 3
반박시 내말이 다 맞음
-
문과누백 << 이건 문과들끼리 줄세운거고 이과누백 << 이게 이과들끼리...
-
건동홍도 명문임 13
반박은 안받음
-
어렵다는 모의고사인데 사실 작년 수능이 더 어려웠음 수능 전에 본 모든...
-
평소에 화장 하는데 아예 안하고 보정 없이 아이폰 16 기카로 찍은 사진인데 님들이...
-
한숨잘까 1
-
이대봉전 8
6평 이대봉전 정도면 난이도 좀 있는 고전소설 아닌가요..? 왤케 정답률이 높지
-
네 저예요
-
이감 수능 0
이감은 60~70점대 오늘 친 23수능은 90점대 뭐가맞는지 모르겠다
-
반수 성공한다는데 지금 대학도 높아보임 ㅋㅋ
-
6평 9평 미응시 삼반수생 어둠의 표본인 ‘나‘가 참전하기 때문.
-
수능수학 10
언제쯤 귀납적 수열이 안나올까 ㄱㄴㄷ, 무등비 삼도극 이런애들은 없애면서 왜 귀납...
-
내가 그렇게 만들거임 사실 그런건 아니지만 굳이 명문대 급 나누고 상처받는 것보단...
-
【파이낸셜뉴스 전주=강인 기자】 전북지역 거점 국립대인 전북대학교가 단순한 학교...
-
싫은데? 안풀건데?
-
아침 컨디션에 따라서 이감 기준으로 원점수가 15점씩 왔다갔다해서... 수능날 아침...
-
ㄹㅇ..
-
평가원 실모 교육청 다 포함해서 국어 88점 처음 받아봄... 감격스럽다
-
문제 퀄리티는 둘째치고 수학 어려웠나요?
-
진짜 뭐뇨이
-
빨래 대신해줄 미소녀 메이드 있으면 좋겠다
-
ㅇ
-
수능날 화작 틀릴까봐 15
요새 매일 화작실모품.....ㄹㅇ 요새 화작도 어려운듯
-
한문제 500원이던 시절부터 5년동안 해왔는데 회사가 대하는 태도를 보니 이젠 진짜...
-
수학 실수 1
실수 줄이기 진짜 어케 하나요 ㅜㅜㅜㅜㅜㅜ
-
벽에 붙어잇는거 차마 옆사람한테 말하지 못하고 그냥 수업들으러 강의실로 도망침...
-
실모 풀어서 틀린거는 답지봐도 내가ㅡ이걸 어케아는데 ㅁㅊ 이라 걍 … 그거...
-
있는지 모르고 계속 묵혀 놓은 거 지금 풀었는데 어디서 보나요
몬데
억지로 푼 것 같아서 불안하네요
잠깡만여 글씨가작아서 보는데좀 걸림
사실 2번 케이스에서 (1,4+a)가 존재하지 않을 “수도” 이부분은 사실 문제가 있긴 해요.
Q. 그럼 문제를 처음 풀 때 어떤 생각을 했어야 하나요?
g(x)의 연속 조건에 주목했어야 해요. g(x)가 f(x)!=0 일 때 분수꼴 함수로 나타나죠. 그러면 분수꼴 함수에서 분자, 분모는 각각 연속함수이기 때문에 불연속이 될 수 있는 의심 지점은 분모=0일 때에요
그러면 g:연속이라는 조건에서 f(x)에 관한 조건을 어떻게 뽑아내야 할까요
일단 f(0)=0인 거는 잘 찾으셨고 0은 중근이 아니라는 것도 아실 수 있었겠죠 근데 여기서 하나를 더 찾아갔어야 했어요
삼차함수의 실근 하나가 밝혀졌기 때문에 0을 제외한 실근이 최대 2개 존재할 수 있어요 f(x)=xp(x)정도로 둬봅시다 (p(x)는 최고차항계수가 1인 이차함수)
1) p(x)의 서로 다른 실근이 2개인 경우
p(x)의 인수 중 하나가 (x+3)이더라도 무조건 분모=0이 되는 x가 존재하므로 모순.
2) p(x)가 중근을 가질 경우
최대한 분모가 0인 지점이 없도록 맞춰준다고 해도 p(x)=(x+3)^2 이고 x=-3일 때 발산, g(x)는 불연속이 됩니다
따라서 p(x)는 실근을 갖지 않아요
상수항은 질문자님도 이미 찾으셨으니 판별식 이용해서 p(x)의 일차항 계수의 범위를 구해주시면 되겠어요
저는 아마 보자마자 p(x)는 실근을 갖지 않는다고 생각했을 거에요
경험 더 쌓으시다 보면 바로바로 보일 거에요
참고로 답이 되는 삼차함수가 2번 케이스처럼 생겼는데 실근이 1개만 생길 수도 있어요
저렇게 판단하는 건 틀렸다고 봐야겠어요
얘는 해설입니다