와진짜이풀이가맞나
게시글 주소: https://orbi.kr/00069001339
몇십분동안 고민해서 겨우겨우 낸 답은 맞았지만
풀이가 다르다
내 풀이에 오류가 있는 것 같다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시간안에 아예 못풀게내는거같은데 더프든 서바든 지랄이든 나만 그리느낌?
-
올해 사회 3
대동법 <<< 가능성 얼마로 봄? 경제 쿨이긴 한데 대놓고 경제로 낼 순 없으니...
-
공룡이 바다에 빠져죽으면 해성층에서 발견될수도 있는거아님? 2
ㄹㅇ궁금한데
-
재수인데 1년내내 아침 먹은날이 손에꼽는디 걍 평소대로 안먹어도 되겟죠…?
-
어려우면 저 좆돼요 제발
-
수학 실모 0
강x가 그렇게좋나요??? 지금 이해원시즌1풀고있는데… 그냥풀던거푸는게맞겠죠?팔랑귀라…
-
내인생의낙
-
크악 수능 이색기가 크악 시험 주제에 우우 수능 이 미친 야발놈이 ㄸㄸ이를...
-
07인데 이거 내년에 2026버전 언제 나올까요?? 그럼 내용 달라지나요 메가패스...
-
인문에 회이트헤드 / 사르트르 / 킨트 / 데카르트 과기에 유체 / 풍력발전기 /...
-
잠 깨는거 일어나는 거 책펴는 거 연필쥐는 거 의자에 앉는 거 샤프심빼는 거 지우개...
-
점수가 80 플마인 게 가장 큰 스트레스
-
현재 24학번 지사의 재학중이고 현실적으로 제일 잘 가면 25 경북의 입학할 수...
-
아수라 강의수강 불찍파 11-1,2,3 + 복습 사문 개념책 회독 적중예감 8회...
-
고개를 들어 ebs 표지를 보게하라
-
해리스냐 트럼프냐…한국시간 오후 2시부터 25시간 투표[2024美대선] 4
[워싱턴=뉴시스] 이윤희 특파원 = 향후 전세계에 영향을 미칠 미국 차기 대통령이...
-
온라인응시에 쓰는거 하나 잘못넣음..
-
자랑스러운 우리 한글과 세계최고수준의 금속인쇄술이 없었다면 우리나라의 유구한역사와...
-
야식은 참고
-
884884보단 낳지않나..
-
미국 운명 걸린 대선 본투표 개막...'승리 예측 0.03%p 차이' 1
[앵커] 전 세계 이목이 쏠리는 미국 대선 본 투표가 미 동부에서 시작됐습니다....
-
영어 성적올라서 감사하다 어쩌구 디엠보냈었는데 답장해주심 ㅠㅠㅠㅠㅠ 증말루 영어 1등급 받을거야
-
오르비할려고짜증나서카톡지움
-
그런 걸 어떻게 일일이 다 재요..
-
성별 논란 ‘올림픽 金’ 알제리 女 복서, 진짜 남자 맞았다 2
‘2024 파리올림픽’ 복싱 여자 66㎏급에서 ‘성별 논란’ 속에 금메달을 차지한...
-
Siuuuuuuuu
-
내가 못해서 지면 눈치보임 ㅠ
-
다 늙어서 주책이라고 하실수도 있지만... 그래도 얼굴 잘 안 나오고 착장 위주로 올리니까 봐주세요
-
1컷 89점이라던데... 정말인가요...? 아무리 봐도 아닌 것 같은데... 15,...
-
그냥 머릿속에 스쳐지나간 단어들 물리 공부하는데 왜 얘네들이
-
내가 돌아왔다 2
휴릅 3분경과
-
6모2 9모 1 사설 1 뜸 요새 뭔 공부하심? 기출 반복에 ebs 계속 보면되려나 …
-
길었던 여정 끝 0
leshgo
-
대성vs메가 7
영어 미적 물생지 들을거에요!
-
마음 싱숭생숭해져서 피아노 치는 시간이 늘었는데 덕분에 수능 전에 곡 하나 완곡하고...
-
분에 100분 더 쓰고도 다 못 품
-
솔직히 저는 극문학보다 IMF 출제각이 더 높다고 생각함 3
차라리 IMF를 국제법적으로 다루는 바젤협약 시즌2(근데 법학에 치우쳐진)가 나오면...
-
여태까지 드릴(드) 이해원 s1,2 4규 s1, 문해전 s1, 커넥션(수2만) 품
-
작수 화작 3점 2개가 좀 어렵긴 해서 그런지 언매랑 1컷 2점차이밖에 안나네요...
-
“한국사로 변별” 0.5선택과목시절
-
시대북스에 안 보이눈데
-
잘하는과목이없음을깨달음 수학도삐끗하면1컷...이고 특히 한지가 비상이라 요즘 한지만...
-
수능 35212 1
문과로 광명상가 가능한가요 ??
-
동시에 막글 내일봐요
-
해외원조 롤스 2
절대빈곤을 해결하기 위해 노력하는 것이 인류의 보편적 의무이다 < 롤스가 동의하나요?
-
수학 노베입니다 14
지금 고2고 내년 수능 미적분 칠려고 수학 공부 시작했어요 진짜 수학 아는게 하나도...
-
후..
몬데
억지로 푼 것 같아서 불안하네요
잠깡만여 글씨가작아서 보는데좀 걸림
사실 2번 케이스에서 (1,4+a)가 존재하지 않을 “수도” 이부분은 사실 문제가 있긴 해요.
Q. 그럼 문제를 처음 풀 때 어떤 생각을 했어야 하나요?
g(x)의 연속 조건에 주목했어야 해요. g(x)가 f(x)!=0 일 때 분수꼴 함수로 나타나죠. 그러면 분수꼴 함수에서 분자, 분모는 각각 연속함수이기 때문에 불연속이 될 수 있는 의심 지점은 분모=0일 때에요
그러면 g:연속이라는 조건에서 f(x)에 관한 조건을 어떻게 뽑아내야 할까요
일단 f(0)=0인 거는 잘 찾으셨고 0은 중근이 아니라는 것도 아실 수 있었겠죠 근데 여기서 하나를 더 찾아갔어야 했어요
삼차함수의 실근 하나가 밝혀졌기 때문에 0을 제외한 실근이 최대 2개 존재할 수 있어요 f(x)=xp(x)정도로 둬봅시다 (p(x)는 최고차항계수가 1인 이차함수)
1) p(x)의 서로 다른 실근이 2개인 경우
p(x)의 인수 중 하나가 (x+3)이더라도 무조건 분모=0이 되는 x가 존재하므로 모순.
2) p(x)가 중근을 가질 경우
최대한 분모가 0인 지점이 없도록 맞춰준다고 해도 p(x)=(x+3)^2 이고 x=-3일 때 발산, g(x)는 불연속이 됩니다
따라서 p(x)는 실근을 갖지 않아요
상수항은 질문자님도 이미 찾으셨으니 판별식 이용해서 p(x)의 일차항 계수의 범위를 구해주시면 되겠어요
저는 아마 보자마자 p(x)는 실근을 갖지 않는다고 생각했을 거에요
경험 더 쌓으시다 보면 바로바로 보일 거에요
참고로 답이 되는 삼차함수가 2번 케이스처럼 생겼는데 실근이 1개만 생길 수도 있어요
저렇게 판단하는 건 틀렸다고 봐야겠어요
얘는 해설입니다