와진짜이풀이가맞나
게시글 주소: https://orbi.kr/00069001339
몇십분동안 고민해서 겨우겨우 낸 답은 맞았지만
풀이가 다르다
내 풀이에 오류가 있는 것 같다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나 11
부끄러 우뜩함
-
예측 0
고전시가 낙지가 고전소설 유씨삼대록
-
문과도 2
C++이나 파이썬 배우는 이유가 뭐임?
-
‘아 뭐 실수한거같은데,,,’ 하고 뚫어져라 쳐다보면 50퍼는 실수한거더라
-
그냥 이런 생각하지 말고 문제 붙들고 일분 일초를 보내면 되지 않나
-
수학 하하 0
2학년말 정시 선언 후 3학년 때 배우는 확통 한 번도 한 적 없음 근데 한양대...
-
첫번째사진 밑줄친거-ㄱㄷ은 임정환쌤 리미트에서 한번도 설명해준적없는건데 뭐임? ㄴ은...
-
밧바 이만 1
ᄂᆡ일 오리라
-
수학 백분의 94는 다른거 100에 수렴해도 안되겠지..
-
제이팝 ㄹㅇ 맛도리네 15
씹덕 형누님들 띵곡들 추천좀 부탁드립니다 ㅎㅎ Night dancer 듣고왔는데 좋네요
-
첫번째사진 밑줄친거-ㄱㄷ은 임정환쌤 리미트에서 한번도 설명해준적없는건데 뭐임? ㄴ은...
-
10덮 3컷인데 제발 수능때 안정 3등급ㅜㅜ
-
연계공부 거의 안해서 그런가 몇문제는 주어진 시간내로 못풂 유씨삼대록 풀이 보고서...
-
보내주시면 사례하겠숩니다...
-
혹은 미래 의머 지망생 분들은 어떤 전공 하고싶으신가요? 갑자기 궁금하네여
-
조건을 혼자 뇌에서 한번 왜곡해서 ㅈ대로 받아들여서 풀고있음 오늘 그렇게 한...
-
이명학 실모 1
1회 풀었는데 6모 3등급(기억안남) 9모 2등급(84?) 인데 이명학 실모 1회...
-
피곤한데
-
혹시 수학 1컷이어도 가능할 상황이 있나요...?
-
생명을 했겠지요...... 인강 안 하시는 게 한입니다
-
'노·조·미'가 미국 대통령 결정하나…해리스·트럼프 막판 총력전 1
https://www.joongang.co.kr/article/25289538 역시 노조미야
-
중세국어 0
중네국어 중다섯국어
-
좆까 ! 풀다가 짜증나서 폐기함에 넣고옴
-
물리 실모 2
물리 실모(서바컨+현모)만 걔속 푸니까 평가원이 쉬운느낌이 듦 물론 이번 수능이...
-
문법 공부할 시간까지 낼 수는 없을 것 같다... 그냥 재수할때 억지로라도 언매공부 했어야 했어
-
“예비병력 되겠다”…60년 만에 총 들고 훈련 나선 백발 할아버지 2
[이데일리 채나연 기자] “전쟁 발발 시 최전선에서 ‘총알 스펀지’(Bullet...
-
건대 공대 0
건대 공대 붙으신 분들 몇등급으로 붙으셨나요?? 수학이 2컷아니면 2중후반인데 딴...
-
생명문제질문 1
ㄷ선지 (다)염색분체 수 판단할ㄹ때 안나타난 염색체도 고려 해야 하는거 맞음??...
-
11월 더프 0
국(언매) 70 (최저x 알바아님) 수(기하) 92 (14, 29틀 커리어하이....
-
요즘 공부할수록 1
전보다 저능해진기분임 진심 … 수학도 전보다 안풀림 ,..
-
축구장 100개 규모 연구소에 3만5000명 채용하는 화웨이… 노키아·에릭슨·삼성전자는 감원 바람 0
화웨이, 올 1~3분기 매출 30%↑… 노키아·에릭슨·삼성은 실적 부진 화웨이,...
-
수능기준 미적 1컷은 아무리 올라봐야 88... 수학황이 부럽다 어지간하면 등급컷...
-
디카프 트레일러 0
한 시즌만 사고 싶은데 뭐 살지 모르겠어요 ㅜㅜ 파이널 너무 신유형 많다 해서 다른...
-
ㅎㅅㅎ 4
기분조타
-
처음따먹을때 50 두번째에 25 세번째 12.5 네번째 6.25 이런식으로 100에...
-
성적 들고오면 라인 잡아드림 179
이과보다 문과를 좀 더 잘 봄 이과도 잡을 수 있음 댓 ㄱㄱ 단순 참고용. 맹신 ㄴㄴ
-
두각학원 전화해보니까 12/31일에 개강 하시면서 바로 키스 로직으로 들어가신다는데...
-
신촌 대학가서 여대생 묻지마 폭행 후 도주…20대男 "술 취해 기억 안 나" 0
서울 신촌 대학가에서 일면식도 없는 여성을 무차별적으로 폭행한 20대 남성이 경찰에...
-
15번 22번에서 첫번째 케이스로 때려박은게 전부 정답상황이어서 운좋게 시간내에 다...
-
뭐가 맞는거지 어지럽네
-
여전히 실모 벅벅? 아님 실모 지양하고 총정리?
-
언미물지 1. 92 95 2 93 93 2. 96 98 1 96 96 1,2 대략...
-
내가 그럼... 조금씩 먹는건 ㄱㅊ은데 너무 달거나 단거 많이 먹으면 속 느끼해서...
-
특히 남자면..주변에 삼수 사수한 선배들 꽤 있는데 많이들 새내기때부터 어울리기...
-
진짜 너무 급해요 9모때는 국어 집중하다가 막판에 끊긴 기억이 있어요 (머리에...
-
나만 등비합공식 안쓰고 등비 음수인거 안상태에서 첫째항 음수인거 확정짓고 음...
-
수능 2년동안 준비 병행하면 좀 많이 힘들겠죠? 22111 목푠데 국2랑 영1은...
-
내 능지로는 이제 한계를 느낌.. 몇년을 더 한다해도 크게 달라지지 않을 거 같음
몬데
억지로 푼 것 같아서 불안하네요
잠깡만여 글씨가작아서 보는데좀 걸림
사실 2번 케이스에서 (1,4+a)가 존재하지 않을 “수도” 이부분은 사실 문제가 있긴 해요.
Q. 그럼 문제를 처음 풀 때 어떤 생각을 했어야 하나요?
g(x)의 연속 조건에 주목했어야 해요. g(x)가 f(x)!=0 일 때 분수꼴 함수로 나타나죠. 그러면 분수꼴 함수에서 분자, 분모는 각각 연속함수이기 때문에 불연속이 될 수 있는 의심 지점은 분모=0일 때에요
그러면 g:연속이라는 조건에서 f(x)에 관한 조건을 어떻게 뽑아내야 할까요
일단 f(0)=0인 거는 잘 찾으셨고 0은 중근이 아니라는 것도 아실 수 있었겠죠 근데 여기서 하나를 더 찾아갔어야 했어요
삼차함수의 실근 하나가 밝혀졌기 때문에 0을 제외한 실근이 최대 2개 존재할 수 있어요 f(x)=xp(x)정도로 둬봅시다 (p(x)는 최고차항계수가 1인 이차함수)
1) p(x)의 서로 다른 실근이 2개인 경우
p(x)의 인수 중 하나가 (x+3)이더라도 무조건 분모=0이 되는 x가 존재하므로 모순.
2) p(x)가 중근을 가질 경우
최대한 분모가 0인 지점이 없도록 맞춰준다고 해도 p(x)=(x+3)^2 이고 x=-3일 때 발산, g(x)는 불연속이 됩니다
따라서 p(x)는 실근을 갖지 않아요
상수항은 질문자님도 이미 찾으셨으니 판별식 이용해서 p(x)의 일차항 계수의 범위를 구해주시면 되겠어요
저는 아마 보자마자 p(x)는 실근을 갖지 않는다고 생각했을 거에요
경험 더 쌓으시다 보면 바로바로 보일 거에요
참고로 답이 되는 삼차함수가 2번 케이스처럼 생겼는데 실근이 1개만 생길 수도 있어요
저렇게 판단하는 건 틀렸다고 봐야겠어요
얘는 해설입니다