와진짜이풀이가맞나
게시글 주소: https://orbi.kr/00069001339
몇십분동안 고민해서 겨우겨우 낸 답은 맞았지만
풀이가 다르다
내 풀이에 오류가 있는 것 같다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사실 희망사항임
-
6모 영어 4
군수생이라 이번에 첨 풀어봤는데 상상도 못 한 점수가 나왔네요..빡센 시험인가요...
-
오노추 3
-
진짜 풀어놓은거 가관임ㅋㅋㅋㅋㅋ 거의 금붕어엿던듯
-
ㅔ?
-
부정적분 말고 긍정적분 하라고~
-
공부를 안했는데 씹ㅋㅋ
-
공통 하나 틀리고 28 29 30 중 하나 맞아서 88로 1등급 받는 가능세계 잇엇으면.. ㅠ
-
프로필 사진이 너무 무섭게 나온듯ㅋㅋㅋ
-
이거 미적 2컷이 83이 나올만한 시험지인가요...? 저만 13,21,22...
-
잔잔하니 좋아요 음악 트는 것보단 나은 듯..
-
정법 질문 1
갑은 피자집 운영하는 중 을은 피자집에 피자 시킴 갑의 직원 병은 피자를 배달하다가...
-
정법 상속 질문 0
갑이 사망했을 때 자녀가 상속포기하면 배우자만 상속받는게 아니라 배우자+부모죠?...
-
아 미적 띰 8개 남았는데 유기해야되나 끝까지 가봐야되나.. ㅠㅠ
-
종강에서 모두가 반대하는 곳, 자기랑 색이 가장 다른 곳이라고 밝힘 그럼 뭐다?...
-
원래 더위 많이 타는데 올해 10월까지 더워서 자율신경계 맛탱이 가버린듯한데 이번...
-
1.언매는 수능날 쉬웠던 적이 없으며 이것은 고구려 수박도에도 기록되어 있다. 작수...
-
언매 지문형에 고대국어 차자 표기를 이용한 삼국 언어 재구 지문 나왔음 ㅇㅇ
-
드가자잇
-
하나하나가 레전드던데
-
경북대 aat 0
경북대 aat 논술 4~5개년을 찾아서 풀어보고싶은데 홈페이지에 작년이랑...
-
적어도 4일에 한번은 씻으셈
-
대충 이런거 모두 힘내셔서 좋은 결과 내시길 바랍니다!! 몸 따뜻하게 하시고 잠 푹 주무세요
-
대인라 라이브 4
대인라 페이지로 들어가서 강의실입장하기 이거 누르고 들어가면 쌍방향이에요????...
-
만점 받길 기원 … 불사탐기원
-
작두타는중인데 5
아까 극문학 삘온다한뒤로 극으로 바꿀만한거 뭐있나봤더니 현대소설에 모래톱이야기...
-
한 번 들어보는게 좋을까요 혼자 n제 풀면서 사고과정 정리하는게 나을까요
-
15분 걷는것도 귀찮다
-
보고서안쓰고싶은데 조별과제라 맘대로 유기를 못함..
-
검토중이겠지?
-
담주까지 5일남았는디 5일안에 번역 가능하려나??? 오늘 일단 22시까지 야근할 1인...
-
시대건 더프건 미적분 사설은 정도가 지나친것같음(허수피셜) 5
이 무새끼들 28번이든 30번이든 꼭 4점짜리 하나는 인간지네처럼 계산...
-
작년에 뭐 나왔나요?
-
시간이라는게 느리게 흐르는것 같습니다. 분명 9일도 안남았지마는, 그리고 지금까지...
-
떡치나요? 저기에 추가로 100만원정도 쓸 생각임
-
체감상 올해 69보다 훨 어려운데 Ebs연계가 높았나
-
연대 경영만 바라보고 있어서 사문 생윤 화작 할건데 국어 잘할거면 뭐가 좋은가요?...
-
혐) 나방 컷 3
너 ㅈ밥이잖아
-
11투스 국어 2
듣기로는 기출 모음집이라느데 맞나요??
-
나선욱 닮은 여자 있는데 포효 한번만 듣고싶네
-
없을까요 ㅠㅠ 아님 대성 듣고 있는데 그냥 이명학이랑 션티 실모 푸는 게...
-
아시나요.... .? 낮잠자고 옴.. ..
-
각각 3등급확보 2등급확보 목적으로 만든거라는데 한등급씩 내려야하는거 아님?...
-
3 15 22 30틀 85점 사람들이 어렵다고 말하는 거 치곤 쉬움 특히...
-
그래프 풀이인가요?
-
요즘 실모 풀 때마다 둘 합쳐서 55분~9시 사이에 끝나는데 현장에서 이정도면...
-
오유란전, 춘매전 11월전에 어디 유튜버가 찍은적 없죠?
-
국- 국물 있사옵니다 현대시- 꽃 피는 시절 고전 소설-오유란전 사실 그냥 내가...
-
대인관계 정상화
몬데
억지로 푼 것 같아서 불안하네요
잠깡만여 글씨가작아서 보는데좀 걸림
사실 2번 케이스에서 (1,4+a)가 존재하지 않을 “수도” 이부분은 사실 문제가 있긴 해요.
Q. 그럼 문제를 처음 풀 때 어떤 생각을 했어야 하나요?
g(x)의 연속 조건에 주목했어야 해요. g(x)가 f(x)!=0 일 때 분수꼴 함수로 나타나죠. 그러면 분수꼴 함수에서 분자, 분모는 각각 연속함수이기 때문에 불연속이 될 수 있는 의심 지점은 분모=0일 때에요
그러면 g:연속이라는 조건에서 f(x)에 관한 조건을 어떻게 뽑아내야 할까요
일단 f(0)=0인 거는 잘 찾으셨고 0은 중근이 아니라는 것도 아실 수 있었겠죠 근데 여기서 하나를 더 찾아갔어야 했어요
삼차함수의 실근 하나가 밝혀졌기 때문에 0을 제외한 실근이 최대 2개 존재할 수 있어요 f(x)=xp(x)정도로 둬봅시다 (p(x)는 최고차항계수가 1인 이차함수)
1) p(x)의 서로 다른 실근이 2개인 경우
p(x)의 인수 중 하나가 (x+3)이더라도 무조건 분모=0이 되는 x가 존재하므로 모순.
2) p(x)가 중근을 가질 경우
최대한 분모가 0인 지점이 없도록 맞춰준다고 해도 p(x)=(x+3)^2 이고 x=-3일 때 발산, g(x)는 불연속이 됩니다
따라서 p(x)는 실근을 갖지 않아요
상수항은 질문자님도 이미 찾으셨으니 판별식 이용해서 p(x)의 일차항 계수의 범위를 구해주시면 되겠어요
저는 아마 보자마자 p(x)는 실근을 갖지 않는다고 생각했을 거에요
경험 더 쌓으시다 보면 바로바로 보일 거에요
참고로 답이 되는 삼차함수가 2번 케이스처럼 생겼는데 실근이 1개만 생길 수도 있어요
저렇게 판단하는 건 틀렸다고 봐야겠어요
얘는 해설입니다