f’(x)=0 질문 이써요 ㅠㅠ
게시글 주소: https://orbi.kr/00068959713
f(2)=0 이런 경우에 f(x)가 (x-2)를 인수로 갖는 건 아는데요
f‘(2)=0 인 경우에 f(x)가 (x-2)를 갖는 건 정확히 어떤 이유 때문인가여 멍천한 질문 죄송함다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
룸메랑 너무 잘맞아서 서로 공부한다고 해놓고 수다만 ㅈㄴ 떪 그리고 오며가며 보면...
-
국어 나기출 언매 2단원 국정원 비문학 2지문 분석 문학론 강의 1 고전시가 단어...
-
지구 심화커리 0
유자분 솔텍 시즌1 둘중 뭐가 더 쉽나요?
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 1
논리싫증주의자는 관심이 많다!
-
얘네 이럴거면 개정 왜했냐
-
내 생각 요하는 활동할 때마다 떠오르는 것고 없고 논설문도 못 쓰겠고 챗지피티만...
-
요약 칼럼이라도 찍어볼까 나중에
-
맞팔구 0
-
100은 뭔가 넘을 수 없는 벽같은데 96은 이사람이 엄청 잘해도 인간계구나 이런느낌
-
Keegan-Michael Key
-
근육통이 생김
-
연세대가 노최저라서 할까하다가 연세대 논술 공부(수리+최저도 공부해야하니)의...
-
달마 오열하겠노 0
단박에 깨달음 ㅇㄷ
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 3
논리싫증주의자는 관심이 없다
-
못생긴듯 0
-
이번만큼은 사랑한다 섹스 ㅋㅋㅋㅋ
-
왜 맞팔했는데 0
1명이 줄어든거지??ㅡㅡ
-
공주 가오떨어져
-
그냥 싫음 화학 자체가 역겨움
-
안녕하세요 0
네
-
뚫리나요???
-
독감인가 1
토요일부터 계속 이러네 열이 내렸다가도 다시 남
-
타과생들 어떻게 생각하시나요
-
아 여기가 아닌가?ㅎ
-
참고로 본인 여잔데 진짜 잘생긴 애보기 어려움
-
사문 윤성훈 한지 이기상 듣고있는데요 아직 개념도 못 끝냈고 마더텅 문제 양도...
-
몸에만 잘맞으면 암기량 적고 문풀하는 재미가 상당함(진짜 중요) 각 사상가의 논리적...
-
남자보고 귀엽다고 느낀 적은 있는데
-
부탁드림!!
-
내 주위 사람들은 잘만 씻던데 전자기기도 각종 청소용품으로 막 청소하는거 보고 엄청 신기했는뎁
-
지금 고3이고 3모때 미적 66 3등급 맞았는데 수학 어떻게 공부해야할 지...
-
어그로 죄송합니다 그냥 적어봤습니다.
-
이게 왜 여러 삽화의 병렬적 구조인지 잘 이해가 안됨뇨 직렬적 구조 아닌가요?
-
여름이었다. 0
아니 왜 벌써
-
올해 우승해야지?
-
어릴때 학교다닐때 앞에서 시범 보여주면 보고 따라하는거 있잖아요? 색종이 접기,...
-
공교육 질 개선할려면 교육수준에 따라 분반 해야함 19
막말로 1등급반에서 교사가 평가원 문제 기출 분석하고 인강 분석해서 가르치면 됨...
-
공교육 사이클로 돌려도 수학12는 고2때 끝나는게 맞는데 말이지 흠... 나쁜말 금지
-
ㅈㄱㄴ
-
뭔가 6모 잘봐야된다라는 생각으로 페이스 조절 못할 것 같은데 아 근데 또 현장감...
-
국어는 높9인데 수학은 낮9임 탐구는 그냥 중간? 가능할까요
-
크아아아ㅏㄱ 연인들 사진 좀 그만 찍어라ㅏㅏㅏ!!!
-
언확쌍윤 13211 이화여대 교육 최초합 가능권인가요?추합권인가요?
-
1년공부하고282930다틀리는상상해서엉엉울엇어
-
나임
-
노래추천 0
life force 뽕차오릉다
-
32311합격 가능할까요?
-
복습할 때 어떻게해야됨? 그냥 지문 쓱 보면서 스키마 떠올리면 됨?
일단 다항함수 말씀하시는 것 같고
f'(2)가 f(2)를 함의하지 않으므로 f'(2)=0이라고 (x-2)를 인수로 갖지 않아요
접할 때는 함수끼리 뺀 후 곱미분을 해도 (x-2)가 남아있어야 하므로 (x-2)²을 인수로 가지는데 이와 헷갈리시지 않았을까 하네요
네 맞는 것 같아요 혹시 그럼 접할 때는 곱미분을 해도 (x-2)가 남아있어야 하는 이유는 뭔가요..?
f를 미분해서 f'이 될 텐데,
f(2)=0이려면 (x-2)가 있어야 하듯
f'(2)=0이려면 f'에도 (x-2)가 있어야하기 때문입죠
아아 맞네요 당연한 거 였군요 감사합니다
(x-2)^2+k
정확히는 f(2)=0이고 f'(2)=0일 때 (x-2)^2를 인수로 가집니다.
미분하더라도 (x-2)^2가 2(x-2)가 되므로 (x-2)가 인수로 남아있는 것을 볼 수 있습니다.
감사합니다! 이해됐어요!
혹시 그럼 f’(2)=0인 것만 보고 f(x)가 (x-2)갖는 다고 얘기할 수 없는건가요?
f(2)=0이면서 f’(2)=0 일 때 (x-2)^2을 갖는다 라고만 생각하면 돨까요?
넵 f'(2)=0은 단순히 미분계수가 0임을 의미하는 것입니다. 일반적으로 보면 그저 x=2에서 극대 혹은 극소임을, 특수하게는 변곡점임을 나타내주는 표지밖에 되지 않아요. 함숫값까지 0이어야 <축에 접한다>는 의미를 지니면서 2가 방정식의 해임((x-2)를 인수를 가짐)과 연결할 수 있습니다.
와 감사합니다 이해 너무 잘돼요..!
너무 수식으로 보지 마시고, 그림으로 그려서 확인해보십셔
이걸 그림 그려서 뭐해요
뭘 봐야 하나 샆었는데 역시 그렇군요 감사합니다
x^2+ k는 x=0에서 미분계수=0이죠 얘를 x축 방향으로 2만큼 평행이동하면 (x-2)^2 +k가 되고 x=2에서 미분계수 = 0이 된다는 걸 예시로 생각하면 쉬워요
평행이동으로도 생각할 수 있군요! 감사합니다
f(2)=0이면 인수정리에 의해
f(x)=(x-2)Q(x)로 놓을 수 있고(Q(x)는 다항식)
미분하면 f'(x)=Q(x)+(x-2)Q(x)를 얻음
x=2 대입하면
f'(2)=Q(2)+0=0이니까
또 인수정리에 의해 Q(x)가 x-2를 인수로 갖고
Q(x)=(x-2)P(x)로 쓸 수 있음(P(x)는 다항식)
다시 쓰면
f(x)=(x-2)Q(x)=(x-2){(x-2)P(x)}=(x-2)²P(x)
따라서 f는 (x-2)²을 인수로 가짐
감사합니다!