수학 급합니다!!! 다항식에서 미지수의 차수는 무조건 자연수인가요??
게시글 주소: https://orbi.kr/0006895897
제목이 곧 내용입니다~~ 카이스트 면접 대비하는데 헷갈리네요,,ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
레버기 0
부지런행
-
수1,수2만 완강하고 미적은 이제 최대,최소까지 들었는데 2020가형 30 접근1은...
-
자작시-잉크 0
-
07귀요미출격><!!
-
젭알
-
젭알
-
우와 3
지각이다
-
수학 조언 0
작수 5등급이었고 2월달에 전역하고 3월달부터 공부 시작했습니다 이미지쌤 커리...
-
이츠뷰리풀라잎 4
난너에겨테이쓸께
-
분명 밤을 샜는데 몬스터 두 캔의 위력이 이 정도라고?
-
美재무장관 "미중 무역갈등 곧 완화…현상태 지속 불가" 1
[워싱턴=뉴시스] 이윤희 특파원 = 도널드 트럼프 미국 행정부의 상호관세 협상을...
-
언매 83 미적 76 물2 40 화2 31 화2 3 4페이지 거의 못건드렸어요...
-
진짜 뭔 낌새를 느낀게 아니라 순전히 어제 저녁 8시부터 지금까지 자서 아무것도...
-
11월 시험공부..
-
좋구만
-
17살 자퇴생 노베이스입니다. 수능이 궁금해서 처음으로 수능국어를 풀어보려고 하는데...
-
세계 뉴스보고 24명 사망 이런거 아무렇지도 않은데 한명의 죽음은 비극이지만 여럿의...
-
ㅇㅂㄱ 7
존아침
-
푹자고싶다 0
원래오래못자고깨서다시자고 가끔은피곤해서누웠는데도잠이안옴 수면의질이망가짐
-
한 챕터 남았다 0
족보 2회독 돌리고 가면 시간 딱 널널할듯요 타이밍ㄹㅈㄷ
-
날이밝았습니다 2
벼락치기러는 고개를 들어주세요
-
플로리디의 정보 철학 - 수특 독서 적용편 인문·예술 05 0
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오늘은...
-
얼버기 2
근데 이제 뭐함
-
불면이 심해져서 안피곤한 날이 없어 가끔은 문 밖에서 누가 문을 두드려 그건 환상인데도 나는 두려워
-
얜 1구 전용 케이슨데 7만원밖에 안함 얘넨 개이쁜데 27만원임
-
시험 4시간 전 0
치타 기상 완료
-
크아아아아악
-
교 수 님 6
에 이 주 세 요 에쁠이면 더 좋고
-
다시 시작 4시간의 전사는 달린다
-
D-6인데 완성된 과목이 없음...................... 화2생2는...
-
롤슈 떴구나 0
만델라 엔딩이라니 너무 아쉽다
-
미치겠다
-
작년에 쓴 문제 재탕하는게 왜 욕을 그렇게 쳐먹었던건지 모르겠음 우수하고 배울게...
-
뭐 난이도 라던가....표본....등등...
-
코로나 걸렸을 때랑 비슷함
-
공부해
-
찌그러진 토끼 카카오 이모티콘 내가할말 얘가다함 애들이 나 보고 만들엇냬 진짜 ㅅㅂㅋㅋㅋ다산다
-
미네깃테유쿠 난다카~
-
맞추나 궁금해서 잠이안옴
-
롤체해야지 8
목표:챌린저
-
느낌이 좋다 4
몬스터 두 캔 빨았더니 잠도 거의 안 오다시피 하고 필기본 노트에 옮겨쓰는 중인데...
-
자취 여부랑 함께 말해주면 더 ㄱㅅ 보통 70 쓰나?
-
시발 4
아
-
제가 작년에 사놓은 책이 2025 뉴런,수분감,시냅스가 있는데 그냥 풀까요 아니면...
-
ㅍㅈ가 뭐게 342
피자 피지 피즈 퍼즐 또 뭐있죠
-
위 문제는 각각 2509 30번, 2506 12번입니당. 위에껀 ㄹㅇ 계산만 12분...
x+3 -> 3은 0차 아닌가요...?
아! 상수항 제외하고요!! 죄송합니다
...문득 이 질문을 보면서 - 저도 제대로 답은 못하겠지만 - 처음부터 공부 다시 해야겠다는 생각이 드네요. 차수가 음수면 분수함수고, 다항함수가 아닌가...? 싶기도 하고, x의 루트2승이면 어떡하지...? 싶기도 하고... 아무튼... 답은 못드리지만 배워가요-
지수법칙 유도과정생각해보시기 바랍니다
일단 지수법칙은 정수에서 정의합니다
그리고 a^0을 정의하고 음수로까지 확장합니다
그리고 이것을 분수로서 정의하죠
그리고 거듭제곱식을 정의하고 유리수로서 정의합니다. 즉 분수꼴은 무리식이라는것을 증명할수있죠
실수는 교과과정상 그냥 받아드립니다
대충 이정도에서 서술하면 적어도 감점은 없을것같네요
오... 생2괴물 키랄님이 댓글을 달아주시다니..ㅎㅎ
지금 문제의 조건이 x^a 에서 a가 0초과라고 제시되어 있는데 이걸 미분한 ax^(a-1)에서 a-1이 0이상이라고 봐도 되는지 궁금해서요~~
지금 정확히 어떤지점이 문제가 되는지 명백하게 다시 좀 써주시겠어요?
만일 a가 '음수가 아닌 정수'라는 제한조건이 안나와있다면 a-1을 0이상이라고 볼수 없습니다(음수가 될 수도 있기 때문에)
그런데 만일 a가 '음수가 아닌 정수'라는 제한조건이 걸리게 된다면 a-1을 0이상으로 봐도 무방해서 이렇게 질문 드립니다
그런데 밑에 lemonaid님이 올려주신 거에 따르면 후자가 맞는것 같네요!!
정말 감사합니다~
다항함수의 미분에서 양수일때는 인수정리를 통해증명하고 음수는 몫의미분으로 증명하고 유리수는 음함수미분 실수는 로그 미분으로 증명된상태인데 어떤지점이 이해가 안가시는건가요?
일반적으로 차수내리고 하는거를 그냥 배우긴하지만 일단 교과과정내에서는 실수까지 확장시켜놓고 학습시키고 있습니다
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
차수가 실수로 확장되는 건 다항식으로 보지 않는 것 같은데... 제가 틀렷나요?
차수를 실수로 확장시키는 건 따로 '다항식'이라고 부르지를 않는 것 같습니다
제가 면접 문제를 풀면서 이해가 안된 것은 문제에 '다항식'이라는 조건이 그냥 툭 던져졌는데 여기에서 x의 차수를 0이상인 정수로 봐야되지 않을까~ 싶어서 질문드렸습니다!! 이렇지 않으면 문제가 안풀려서요~~
P.S:UAA모의고사 너무 잘풀었습니다!ㅋㅋ(공동저자분 중 1명 저희 학교..ㅋㅋㅋ)
아 약간 혼선이 있었네요
제 말의 의중은 그 알고계시는 미분법은 다항함수던 아니던 편하게 사용할수있다는 의미였고 다항식의 정의는 음이 아닌정수가 맞습니다
예를들어 기출에서도 극한문제에서도 다항함수라고 주어진경우에는 차수를 결정지을수있다
여기서도 자주 사용되는 이론이기도 합니다
제가 말씀드리고 싶은거는 지수의 확장에서 배운내용에 의거하면 음수인경우는 분수꼴이므로 다항식이 아니고 약분되지않는 유리수형태인경우 무리수임을 인지하게 함으로서 다항식이 아님을 그냥 고교수준적으로서 설명해드릴려는 의중이었습니당
네 키랄님 정말 감사합니다!
넵! 도움되셨다면 저도 기쁘네요!
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
정말 감사합니다!
음이아닌 정수 n에 대하여 fx= anx^n+an-1x^n-1 +...+a0 [an~a0는 실수]를 다항식 이라고 부르는거 아닌가요?