이해원 마지막문제 질문
게시글 주소: https://orbi.kr/00068886071
Fx가 x제곱을 가지는 정확한 이유 아시는분 있냐요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
9평 난이도보면 수능날 불영어가 정배인데 하도 난이도때문에 말이 많앗어서 모르겟음...
-
이건 어따쓰는건가요?
-
??
-
시야와세니 나리타이~ 라쿠시테 이키테 이타이~
-
요새 수능으로 원하는 학교를 갈수 있을지 자주 회의감이 듬 수능성적 상방도 엄청...
-
171130 ㅋㅋ 바로 삼차함수 페이크 ㅋㅋ
-
졸업생이 재수생 말하는거 맞죠? 의대증원 n수생 유입 뭐라뭐라 하더니 어째 작년보다 들 늘었군요
-
녹내장 있어서 나중에 눈 더 안 좋아지면 공익 갈 수도 있을 것 같은데
-
탈릅할까 2
오르비에서 존재감 제로
-
왜받은거지
-
1학기 장학금 받아, 2학기 마치고 공군가, 이번에 수능 준비도 해 2
ㅅㅂ 내가 뭘 안했는데 내가 뭘 더해야하는데 내가 단과 보내달라고 하냐? 내가...
-
어쨋든 국숭세단이니까 나쁘지않은 인서울이라고 생각했는데 단대 이과쪽이 많이 밀리는거...
-
여자가 1대1로 술마시자고 하는거는 마음 있는거임? 5
다들 추석에 공부함?
-
다이어트 하기..ㅜㅜ
-
하는거에요? ㅜ 이제 엔제 수학 과목별 한 권 겨우 풀 고 있는데.. 백분위...
-
문풀 양 좀 늘리고 싶어서 그런데 커넥션이랑 병행할 엔제 4규 시즌1이나 이해원...
-
수특 수완 연계 1
과탐에서 연계되었을 때 체감 됨?? 이번에 화학 16번연계고 생명은 막전위 세포매칭...
-
걍 존나 외롭네 3
하
-
외대 어문 교과 0
다들 환산점수 몇으로 찌름?
-
걍 ㄹㅇ 국영수사탐과탐 통틀어서 내가 풀어본 문제집중에 제일 비효율적임 일단...
-
ㅈㄴ비싸네 ㅋㅋㅋ
-
사랑은 성욕이다 1
-
그러지말아주세요
-
요즘 취미 0
슈뱅가서 도네하기
-
연휴계획 0
토 8시기상 9시-12시 풀공부 일 8시기상 9시-12시 풀공부 월 6시기상...
-
갓반 고1입니다 역학 파트가 내신 범위라 하는데 문제가 너무 안 풀리네요.. 경제...
-
미장 4일차 0
30만원으로 3마넌 수익 단타 ㅈㄴ 침 하
-
가천대 수시모집 지원자수 전국 1위…경쟁률 24.4대 1 8
[서울경제] 가천대학교는 13일 2025학년도 수시 지원을 마감한 결과, 3438명...
-
무엇인가요 한번씩 ㄱㄱ
-
고1이라네요 죽고 싶다 ㅋ ㅋ
-
국수몰빵박다가 효율 안 나와서 영탐 미친듯이 하는중 영탐만점:)
-
N제 ㅊㅊ좀 3
지금 미적 공통 설맞이하고 있는데 테마별로 문제 들어있는 N제 추천 부탁드려요
-
솔직히 이제 연예인들 보면 일반인들이랑 크게 다를 거 없다~ 느껴질 정도로 요즘...
-
수학 시험 하나 쳐보려고 하는데 추천 부탁드립니다. 9
20학년도 이후에 시행된 6/9/수능 중에서 재미있었던 시험 좀 알려주세요....
-
쉽고 어렵고를 떠나서 경향이 바뀌었다는 것부터 인지하세요. 제~발~
-
걍 공부하다보면 존나 외로워질때 있는데 외로움>성욕으로 전개가 자주 됨 ㅇㅇ
-
사관학교류 학교는 진짜 그직업 하고싶은거 아니면 가지 말아야됨 4
99.99퍼확률로 후회함.. 경찰대 사관학교이런거
-
??
-
1일1실모가 정배 맞죠?
-
잔뜩 소비하고 싶은 밤이구나
-
손고운 이사람 좀 치네 걍 빼박 아닌건데 뭐가 애매ㅋ ㅋㅋㅋ
-
내 생일!! 5
축하해주세연~
-
강x 시즌2 1
강x 시즌2 난이도가 전반적으로 다른 실모에 비해서 어떤 편인가요 빡모 히카 킬캠...
-
수완화학 어렵다 0
수특보다 깔?끔?한거같은데 더 어려움 ㅅㅂ
-
도파민 팡팡 터짐 실모를 이길 수 있는 유일한 방법 문해전.
-
반수 결심후 하루 종일 이곳에서 서치를 한 지도 벌써 일주일이 좀 넘었습니다! 일단...
-
1년만에 연락함
-
차단어캐함 2
마렵네
와 이거 풀 때 ㅈㄴ 고전했는데
헐 정시의벽행님도 고전했다고요?ㄷ.ㄷ
케이스만 걸러드릴게요
함수 정의에 의해서
g(0)=f(0)/(f(2)-8) 아니면 1/8인데
방정식 g(x)=0의 근이 x=0이니까 f(2)=/=8이고 f(0)=0
f(x)랑 y=8이랑 접하게 되면 그 점을 <-2,-8>만큼 평행이동시킨 점에서도 f가 x축에 접해야되는데 삼차함수니까 그건안되고
그러면 f(x)랑 y=8이랑 만나는 점을 <-2,-8>만큼 평행이동한 점에서 f가 x축이랑 만나면 되겠고 거기서는 g=0이 아니라 1/8이 됨
만약 f가 x축이랑 세 점에서 만나면 g=0은 그러면 실근이 2개가 돼버려서 안됨
한점에서 만나면 f=8인 점이 f=0인 점을 날려버려서 g=0 실근이 없고
그럼 f는 x축이랑 두 점에서 만나는데 그림에서 f=8인 점을 <-2,-8>만큼 평행이동시킨 점이 x축과의 접점이 된다면 그때는 g=0은 실근을 한개 가지긴 하는데 불연속임
극한값은 이차/일차라 0인데 함숫값은 정의대로 8분의1이니까
그러면 평행이동시켰을 때 접점아닌교점이랑 겹치겠고 그림처럼 되겠네
아님말?고
함수 g(x)가 조건(가)를 성립시키기위해선 f(a+2)=8인 모든 a에서의 f(a)=0이고 lim x->a에서의 g(x)의 극한값이 1/8로 수렴해야함을 알수있고 조건(나)를 성립하기위해선 g(x)는 x=0에서 함숫값0을갖기에 g(0)=0임을 알수있음.
i)모든실수x에서 f'(x)>=0이면 f(x)는 x=0에서의 함숫값은 0임을 조건(나)를 성립하기위한 조건으로부터 알수있는데 그렇다면 i)의 f(x)=0의 근은 항상 x=0에서만 생성됨을알수있음.(f(x)는증가함수이기때문)
만약 f(x+2)=8의 근이 x=a라고 하면 a=0이아니면 f(a)=0이 아니기에 g(x)는 모든실수에서 연속이아니기에 a=0이여야함.근데 a=0이면 lim x->0에서의 g(x)의 극한값은 0이 나오기에 [조건(나)]
f(a+2)=8을 만족하고 f(a)=0를만족하는 x=a에서 g(x)의 극한값이 1/8이라는 함수 g(x)의 조건에 모순된다.
따라서i)의 경우는 성립하지X
그러므로 ii) f(x)는 극대와 극소를 갖는 삼차함수가됨을알수있다.
f(x)=0에서 x=0임을 언제나 만족하므로 f(x)=x^nXq(x)(n=1혹은n=2,※n=3이면 f(x)가 i)의 집합의 함수가 되어버림)
만약 n=1이면 f(a+2)=8인 모든a에대해 f(a)=0임을 i)로부터 알수있는데 a=0이 아니면 f(a+2)=8인 a에대해 f(a)=0이 아니기에 성립하지않고 a=0이면 g(x)의 x=0에서의 함숫값이 0이 나올수없으므로 이는 성립하지않는다.
따라서 f(x)는 x^2을 인수로 가져야만한다.