a<c<x, x->a+ 이면, c->a+ 라는 명제
게시글 주소: https://orbi.kr/00068883163
다음 논의가 틀린 이유는 무엇일까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인스타나 유튜브 유나 직캠 댓글 보면 뭔 죄다 골반 수술 얘기네 분명 몇 달전까지는...
-
임차 20번 정도
-
을종배당 2
뉴원스톱암보험
-
내일 1교시인데.. 이런 그러니까 교수님 왜 3일전에 발표하라고 통보를
-
여러분 5
자라
-
바꿨는데 존나맛있다 ㄹㅇ
-
ㅈ됐네
-
잔ㅋ 1
다ㅋ
-
저 급식 아님 0
-
간호가고싶음 0
불취업이라는데도 가고싶음 가는게맞나
-
님들은 어떻게 이런 공부안함..?을 극복하셨나요 ㅠㅠ
-
저 급식임 3
-
하루종일 물고일음
-
친구가 내신으로 잠깐 썼던거 준다는데 작년것도 괜찮나요?
-
어디까지올라가는거에요?
-
추석이었나 무슨 영상같은거 녹방 틀어놨길래 관리자 없는줄 알고 그 1557이모티콘?...
-
몸이 너무 아파 5
흐
-
쌍윤 각이네 1
교재 구매 고고링 종익쌤 다시 봬요
-
몇개 보다보면 옛날꺼까지 계속 들어감 ㅈㄴ 많이 봄 그러다가
-
피자 먹음 13
행복함
-
오노추 0
-
원래 애니는 5
미소년남주에 자아의탁하려고 보는거 아닌가
-
대학입시만 알지 그 이후 진로에 대해서는 잘 모르겠네 자연대 교수하기 빡센가요?
-
최적? 아는 게 하나도 없음
-
내일할거 8
앱스키마 독서문학 기출정식 찔끔 미적볼텍스끝내기 두날개 볼록렌즈까지 끝내기
-
화작 확통 생윤 윤사 91 61 76 47 35 수학 나만 어려웠나.. 다들...
-
돈벌고싶어 0
아
-
어떤 강의가 가장 맛도리인가요?
-
사실 스토리는 걍 그저 그렇긴 한데 남주 미소년이라 자아의탁하기 좋음
-
사문 <--개념량 개많아 보이는데 지금 런 할만 한가요? 17
일단 배경지식 0인데, 지금 런 해도 될까요?
-
23화2는 머임 5
투필순데 만점자 4명 머임
-
상식적이고 이유있는 호의에 고마움을 못느끼고 이유없는 호의에만 큰 고마움을 느끼는
-
분명히 풀었던건데 30분 생각해도 못풀겠음 기출로 돌아가야하나
-
누백9~13은 몇등급대인강요?
-
과외생이 5모 다맞아왔길래 더 이상 가르칠게없으면어쩌지햇는데 아직 알려줄게 많음...
-
베터리가 3%인데.
-
우울하다 우울해 18
또 우울시계가 째깍째깍 ~ 우울하다 우울해 라면 왜 먹었지? 살 찌겠네
-
광공업 비율 보고있는데 경북보다 많네 1 경기 2 서울 3 경북
-
찬우쌤 3
감사합니다. 선생님 덕분에 작수 문학에서 손도 못 댔던 제가 이번 5덮 문학 다...
-
스탭1은 술술풀려서 풀고있긴한데 진도를 지금 수1은 삼각함수고 수2는 적분인데 완전느린건가?
-
웃음꽃이 1
활 짝
-
ㅇㄱ ㅈㅉㅇㅇ? 3
난 다크인데
-
어디한번 날 운지시켜봐
-
이젠 지쳐서 0
아무것도 못하겠다.. 공부가 손에 안 잡히능데 한 번의 내신 실수가 지난 내 모든...
-
1패 2승 1무 2
ㅅ1ㅂ!!
-
이런 더프같은 3
사설 모고는 찍맞이나 호머식 채점해도 된다 vs 안된다
-
운명을 지나치다 10
운명을 지나치다
-
6모가 2주도 안남았네 16
이게말이되냐…
-
만표 80 넘는 탐구 없이 에피 찍은애는 없길래
-
띄워주는데 태연이랑 윤하 노래도 좋은게많네요
클로드 ai에 물어봤는데 x->a+ 이면 c->a+ 인 것은 맞고,
lim(x->a+)f'(c) 일 때 c는 x에 종속된 변수이지만 lim(c->a+)f'(c)에서 c는 독립변수라서
수렴할 때 c의 움직임이 종속돼있을 땐 경로가 제한적이지만 독립적일 땐 아니고,
f'이 불연속인 경우에 특히 이런 불일치가 부각돼 보일 수 있다네요.
위에서 3번째 줄에 문제가 있었네요.
가장 오른쪽 극한(c->a+)이 이 존재한다면 오른쪽에서 두번째 극한(x->a+)이 존재하는 것은 맞지만, 역은 성립하지 않네요. 이는 윗분이 말씀하신 c가 독립 변수인지 종속 변수인지와 유사한 논의이군요.(가장 오른쪽 극한은 c가 독립변수, 오른쪽에서 두번째 극한은 c가 x에 종속된 변수)
극한의 정의(엄밀한 엡실론 델타)를 생각해보면 델타 구간 내의 모든 x의 함수값이 엡실론 구간 내에 있어야 합니다. 오른쪽에서 두번째 극한(x->a+)이 존재하면, 델타 구간 내의 적당한(어떤) c가 존재하여 그 c의 함수값이 엡실론 구간에 있다는 것이고, 이는 극한의 정의에 부합하지 않습니다. (모든이 아니라 어떤 이니까요.)
오른쪽 극한이 존재한다면, 델타 구간 내의 모든 c의 함수값이 엡실론 구간에 있다는 것이므로, 오른쪽에서 두번째 극한도 같은 값으로 존재한다는 것을 알 수 있습니다.(델타 구간 내의 모든 c에 대해 성립한다면, 어떤(일부분의) c에 대해서는 자명히 성립하기 때문입니다.)
정리하자면, 모든과 어떤의 차이라고 할 수 있겠네요.