엄밀한 수학(1): 구간 별로 정의된 함수의 미분 가능성
게시글 주소: https://orbi.kr/00068865526
얼마나 오래 갈 지는 모르겠지만, 고등 수학에서 빈번하게 다뤄지는 몇 가지 주제에 대하여 조금 엄밀하게 다뤄보는 글을 쓰려고 합니다. (주제 추천 받아요.)
엄밀한 수학이지만, 수학을 전공하지 않은 고등학생 정도의 수학 지식을 갖고 있는 분들도 최대한 이해할 수 있도록 써 보려고 합니다.
첫 번째 주제는 [구간 별로 정의된 함수의 미분 가능성] 입니다.
[2021학년도 9월 모의 평가 10(나)]
위 문제와 같이 구간 별로 정의된 함수의 미분 가능성을 묻는 경우, 미분 가능성의 정의보다는 대부분 다음 두 가지 식의 연립으로 해결합니다.
(i)은 [미분 가능하면 연속이다.]의 성질을 이용하여 각각의 식에 1을 대입하여 같다고 놓고 구합니다.
(ii)는 각각의 식을 미분하고 1을 대입하여 같다고 놓고 구합니다.
(i)은 자명합니다. 문제가 되는 부분은 (ii)의 논리입니다. (ii)는 "도함수는 x=1에서 극한값이 존재한다."는 것을 의미합니다. 이를 엄밀하게 규명하기 위해 몇 가지 명제를 떠올려봅시다.
명제1: "미분 가능하면 도함수가 연속이다."
수학을 조금 깊게 공부해 본 성실한 고등학생이라면 위 명제1이 거짓임을 알고 있을 것이고, 또 그 중 대다수는 그의 반례도 알고 계시리라 생각합니다. (단, 그 역은 성립하죠.)
그렇다면 결론부의 조건을 조금 더 약화시켜 생각해봅시다.
명제2: "미분 가능하면 도함수의 극한값이 존재한다."
명제2 역시도 명제1의 반례로 어렵지 않게 거짓임을 보일 수 있습니다.
그럼, (ii)의 등호가 성립함을 보장해주는 근거가 되는 명제는 무엇일까요? 우리는 미분 가능한 함수에 대하여 그의 도함수의 극한값이 존재한다는 것은 알 수 없지만, 최소한 문제 조건으로부터 도함수의 좌극한과 우극한이 각각 존재한다는 것을 알 수 있습니다. 즉, 다음 명제를 생각해볼 수 있겠습니다.
명제3: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수의 극한값은 존재한다."
위 명제3이 참이라면, 우리의 최종 목적인 (ii)의 논리적 근거를 마련할 수 있습니다. 위 명제3의 참을 설명해주는 것이 바로 다르부 정리(Darboux's Theorem)입니다.
고등학생이 이해할 수 있는 언어를 기반으로 다르부 정리의 내용을 살펴봅시다. (증명은 "Introduction to Real Analysis by Robert G. Bartle"을 참고했습니다.)
다르부 정리 (Darboux's Theorem)
: 함수 f가 닫힌 구간 [a, b]에서 미분 가능하고 k가 f'(a)와 f'(b) 사이에 있을 때,
f'(c)=k를 만족시키는 c가 열린 구간 (a, b)에 존재한다.
즉, 미분 가능한 함수의 도함수는 사잇값 정리의 결론을 만족시킵니다.
[증명]
미분 가능한 함수 g를 다음과 같이 정의합시다.
g가 연속이므로 최대-최소 정리에 의해 닫힌 구간 [a, b]에서 최댓값을 가집니다.
이므로
g는 x=a에서 최댓값을 갖지 못합니다. 이와 비슷하게, x=b에서도 최댓값을 갖지 못합니다.
즉, 닫힌 구간 [a, b]의 경계에서는 최댓값을 갖지 못하므로 최대가 되는 지점을 x=c라 할 때, c는 열린 구간 (a, b)에 존재합니다. 따라서 다음이 성립합니다.
Q.E.D
다시 우리의 원래 목적으로 돌아가서, 위 다르부 정리에 의해 미분 가능한 함수의 도함수가 좌극한과 우극한이 각각 존재한다면 반드시 그 두 값이 같아야 합니다. 그리고 더 나아가 그 지점에서 도함수는 반드시 연속이어야 합니다. 이 명제3을 다르부 정리에 의해 더 강한 조건으로 바꿔 다음 명제4가 참임을 알 수 있습니다.
명제4: "미분 가능하고 도함수의 좌극한과 우극한이 각각 존재하면 도함수는 그 지점에서 연속이다."
처음의 문제에서 f'(x)의 x=1에서 좌극한과 우극한이 각각 존재하므로 위 명제4에 의해서 f'(x) x=1에서 연속입니다. 따라서 (ii)의 등호가 성립합니다!
제 글이 그닥 많은 사람들이 읽지는 않지만 ㅎㅎ;; 개인적으로 정리해보고 싶었던 주제였습니다. 조금이나마 도움이 되셨으면 좋겠습니다. 감사합니다:)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 3등급턱걸이인데 머할까요?
-
1등 2천덕 2등 천덕 충원률 0%
-
오늘 뭣모르는 중딩의 푸념 들어주셔서 감사합니다 여러분 덕에 정말 생각 많이...
-
진짜 수학 스킬 1도 모르겠던데 그런 거 다 어디서들 배워오는 거임 대치동을 ㄹㅇ 가야함?
-
중딩 때 수능은 커녕 16
소금물에서 벽 느꼈으면 좋아요 ㅇㄷㄴㅂㅌ
-
서바이벌 영어 0
서바 영어는 평가원이면 1등급이 얼마쯤 나올까요? (난이도 질문)
-
왜지.. 인구수가 넘 감소했어..
-
기출풀다가 궁금해진건데 x>0 2x<=f(x)<=3x f(1)=2 f(2)=6...
-
정체궁금한사람있음.. 10
아이민이 4로 시작하는데 측정불가한 시기부터 지금까지 일침글을 난사하시는..
-
공부 3
다들 어떤책 ?요즘 뭐공부하고있나요 수능 기출문제 푸나요?
-
프라임 값이 플러스 무한대에서 마이너스 무한대로 바뀌어도 7
부호변화는 있으니까 극값이라고 하나요? 아니면 무한대면 정의가안되니까 극값으로 못말하나요?
-
뭐지...?
-
국어 종합 질문 세트(ㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂ 형님 누님들 한 번만 답변해주세요) 4
대성, 매가 패스 다 있고 모고 2초~3초인데 올오카 이번 여름방학 안에 끝낼 수...
-
오렌지다.
-
선착순 1명 3
천덕 주세요
-
어느정도는 관성을 유지해줘야하는게 있는 것 같음 관성 붙으려고 할때마다 나약해져서...
-
제목 그대로 수학풀때만 잡생각이 진짜진짜진짜심한데요.. 국어영어풀때는 딱히 안그래요...
슈크란