개인화배치표의 원리에 대해서(제가 알고 있는 내용.)
게시글 주소: https://orbi.kr/000688574
이 글은 순수 제 머릿속에서 나온 상상과 텐볼 운영진의 배치표 제작법을 혼합해 만들었으며
오르비스 팀이 이러한 방식으로 만들었다는 것이 아닙니다.
따라서 저에겐 아무런 법적 책임도 없습니다.
올해식으로 연대식 355점이라고해요
경영이든 영문이든 어느 학과를 넣어도 이 점수대엔 100%에요.
올해식으로 연대식 348점이라고 해요.
이 점수대면 영문은 100% 지만 경영은 올해같은 상황이 발생하면 떨어져요. 90%에요
올해식으로 연대식 338점 이라고 해요
이 점수대면 영문은 5% 미만이지만 경영은 06년 연경 10 연경제와 비슷한 상황이 터질 수 있어요 . 15%쯤 되요.
이런식입니다..<- 텐볼 어느 분의 해석.. 제 의견이 아님.
그런데 이 올해식 점수를 넣을 때. 백분위에 따라 넣어요.<-이거는 제 의견도 맞음
저는 이 점이 의문이였던 거에요.
어떻게 백분위와 상관이 없는지..
오르비스 옵티무스에선 텐볼의 어느분과 다른 방식으로 산출하시는 건가요?
만약 그렇다고 해도 잘못된 원자료로 만들엇는데
왜 백분위만 틀리고 에측확률은 맞나요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언제 멸망하냐고
-
엔버 뜻 0
엔수하는 버러지..
-
신사에서 먹었던 복숭아빙수
-
오해 ㄴㄴ
-
고정 n점 그런 거 수능 전까지 아~무 의미없다
-
닉변함 후후 10
-
그만그만 2
이렇게 뒤에서 얘기하지 마요…. 할말 있음 걔 앞에서 얘기하고 없다고 속얘기 다...
-
팬티 찢어졋네 9
왤까
-
맨 왼쪽이 저임.. 인스타 스토리 보다가 3년 전 모습 찾음뇨 복싱은 반수땜에 접었어요
-
앙
-
고로시메타인거같길래 적어봄 그래서 실제로 경제로 계약서만 4장 적었고 경제로...
-
님들 요즘 1
시간 어떠신가요 원래 고3은 빠르게 흐르는건지..
-
할거임?
-
입시 때 먹은 벤조디아제팜 없으니까 하루 단위로 패턴이 막 바뀜 컨텐츠팀 일이나 할까
-
여기 설의만 몇 명이여..
-
여기 동네에 마가꼇나 그렇게열심히 공부한다 하면서 내신이고 모의고사고 나한테...
-
확정은 아닌데 만약에 진짜 하면 만나서 먼 말 하지 오르비 하게 생겼어요 이런 말은 안하시겠지
-
나였어도 만족 절대 못하고 폐인처럼 지냈을거같은데.
-
아내일할일많은데 9
못자는것도 스트레스임
-
1. 난 모든사람에게 착하게 대해도 나를 싫어하는 누군가는 분명히 존재한다 2....
-
무 슨 메 타 임 11
제발알려주세요
-
궁금함
-
닉넴이 이러니 먼가 귀척하게되네 자꾸,,,
-
이제 나이 들어서 평소에도 이렇게 염분 높은거 못먹는데 양치 해도 입안에 온통...
-
나도 고대 애매한데 니가뭔고대냐 니가아무리수학못한다고머라해도 니는2점후반이고 난...
-
본교재랑 자료들 다 구매하고싶은데 판매하실분 있으신가오ㅠㅠ 아무도 안팔아잉
-
어케 이겼노
-
대학을 가는데.... 고정 50, 48 아니면 여기 답 없는데
-
뿡뿡 4
뿌직뿌직
-
열품타같이하자하는데 그 친구는 시간이 많이 안나왔음... 어쩌다 한번 이기면 그걸로...
-
ㅇㅅㅎ
-
지방일반고 문제점 12
드릴들고가면 도둑맞는다..
-
그분이 나이가 몇인데 열등감을 느끼겠노??? 그냥 컨셉임
-
난 대충 살고싶은데 주변 사람들이 너무 잘나서 억지로 살게됨 뭔가 이루고싶다기보단...
-
시발 겨울 동안 대체 새벽 2시 오르비에 주접글은 왜 쓴 거야... 새벽 오르비를...
-
웅! 6
이는 밥을 해줬어
-
와 핑크.. www.youtube.com/shorts/3zwuOxVQUwE
-
중경외시 5
.
-
갑튀 콜라 햄버거 시키니까 28000나왔네
-
이게 썸은 맞는거겠지 12
나만 관심있고 좋아하는건 아니겠지 조급해지면 될것도 안될텐데 나만 애타나봐
-
우흥하다…ㅠㅠ 1
-
그때 한창 이것저것 압박 스트레스받을일 ㅈㄴ 많았어서 그나마 이 닉 달고 괜찮은게...
-
물류해야하네 4
나야말로 우울해 ㅠ
-
좆도 아닌 글에 댓글 와바박 박히는거 보면 화나..
-
우울 0
아.
-
애들한테 반수라이팅이라도 해야겠음 막막하구나
-
이럴줄알았다 4
사실 나도 우울함...
-
우울하다 1
잠이 안 온다
-
텍스트만 봤을 땐 띠꺼워도 좀 모자라게 생긴 스티커 하나 같이 달면 안 띠꺼워 보이고 조음
아마 오르비에서 수작업이라고 말한 건, 올해가 처음이라서 프로그램 확충에 시간이 걸리지 않았나 생각되요.
이거는 순수 제 머릿속에서 나온 상상임
(1) 백분위도, 합격확률도 모두 추정치이므로, 당연히 오류가 있습니다. 오류의 크기가 어느 정도이냐 하는 문제만 있는 것이고요. 그러나 두 개의 오류는 서로 다른 방향으로, 서로 다른 크기로 움직입니다. 예를 들자면, 어떤 해에는 백분위 추정치는 비관적으로 뽑혔음에도 불구하고, 합격확률 추정치는 낙관적으로 산출될 수 있고, 어떤 해에는 백분위 추정치는 낙관적으로 산출되었으나, 합격확률 추정치는 정상일 수도 있습니다.
(2) 같은 해의 p 와 xn 간에는 음의 상관관계 (~반비례) 가 있지만, 서로 다른 해의 p와 xn 간에는 상관관계를 줄어들게 만드는 noise가 많습니다.
작년의 백분위 추정치를 p2010, 올해의 백분위 추정치를 p2011 이라고 할 때,
작년의 백분위 추정치에 대한 분석 결과,
p2010=0.3 에 해당하는 지점이 p2011 = 0.2라고 분석되었을 경우,
xn at p2011=0.2 일 때 값과 xn at p2010=0.3 일 때 값은, 지원자들의 지원 행태가 동일하고, AHP 선호도 조사 결과가 동일하고, 정원이나 입시 요강 등의 변수들에 변화가 없다는 전제 하에 동일할 수 있지만,
xn at p2011=0.2 일 때 값과 xn at p2010=0.2 일 때 값은, 지원자들의 지원 행태가 동일하고, AHP 선호도 조사 결과가 동일하고, 정원이나 입시 요강 등의 변수들에 변화가 없다는 전제 하에서도 동일할 수 없습니다.
시발영어님과 Chewy님의 의견의 오류는 다음 사항을 고려하지 않기 때문에 발생합니다.
1) 특정 학과의 백분위 기준 합격선이, 학생들의 학과에 대한 선호도 변화, 정원 변화, 입시 요강 변화, 지원 경향 변화 등의 요소에 따라 매해 다를 수 있음을 고려하지 않았습니다.
2) p의 오차가 매해 다른 방향, 다른 크기로 나타날 수 있음을 고려하지 않았습니다.
1. 예 그렇습니다. 개개의 학과만 보면 그렇지요. 하지만 전체 학과를 통틀어서 보면 백분위 추정치와 합격확률 추정치는 비례하는 경향이 있습니다.
그렇다면 백분위가 낙관적이면 전체 합격확률 추정치도 낙관적이 될 수밖에 없지 않습니까.?
2. 같은 해의 p와 xn 사이에 반비례가 있다고 인정해 주셨습니다.
그렇다면 올해의 p가 잘못됬으니 그에 반비례해서 xn도 잘못된 결과가 산출되지 않습니까?
1.
동일한 '2011학년도'에서 백분위가 커지면, 합격 확률은 떨어지게 됩니다.
예를 들어 백분위 추정치 0.20%에서의 합격 확률이 70%이면, 백분위 추정치 0.30%에서의 합격확률은 50%로 떨어지는 식입니다.
다만, '2010학년도'의 백분위 추정치 0.50% 에서, 합격선이 결정되었다고 해서, '2011학년도'의 백분위 추정치 0.50% 에 합격선을 잡지는 않는다는 뜻입니다.
왜냐하면, 2010학년도와 2011학년도에 임의의 학과의 합격선을 형성하는 데 영향을 주는 변수의 값이 다르고,
d2010 (2010년의 표본 점수 분포), c2010 으로부터 산출된 p2010 을 xn2011을 계산하는 데 사용하는 것보다는,
d2011, c2011 로부터 바로 xn2011 을 계산하는 데 사용하는 것이 더 오차를 유발하는 요소를 줄이기 때문입니다.
그리고 p2011 을 d2011, c2011로부터 산출된 값인데, 이 값을 산출하는 과정에서 오차를 발생시키므로,
d2011, c2011로부터 일정한 오차를 발생시키며 바로 계산해 낼 수 있는 xn2011을, 굳이 p2011 이라는 한 단계를 더 거쳐서 오차를 누적시킬 필요가 없는 것이구요.
언제나 p와 xn은 임의의 오차를 갖습니다.
다만 p2011과 xn2011의 오차가 같은 방향으로, 같은 크기로 움직이지는 않습니다.
p2011과 xn2011 은 서로 연결 tie를 가지고 있지만,
오차(p2011)과 오차(xn2011)은 서로 독립적으로 움직입니다.
그렇다면 오차는 차치하고.
2011학년도의 백분위 추정치 0.2%에서 합격확률이 70%이면 0.3%에서는 합격확률은 50%로 떨어지는 식이라고 하셨죠.
그런데 백분위 추정을 잘못해서 원래 0.3%로 표기받아야 할 사람이 0.2로 표기받았어요.
합격확률도 50%에서 70%로 올라갔겠죠.
그렇다면 P2011과 XN2011은 상관관계가 있다면
오차가 아닌 P2011자체가 문제가 있다면 XN2011에도 문제가 있는 것이 맞겠죠.
아뇨 그렇지 않습니다.
애초부터 xn2011 이 p2011 을 참조하지 않기 때문에,
'원래 0.3%로 표기받아야 할 사람이 0.2%로 표기받았다고 해서, 합격확률이 50%에서 70%로 올라가'지 않습니다.
계속 같은 말이 반복이 되는 건,
특정 학과의 합격 확률을 백분위 기준으로 산출한다는 생각을 너무 뚜렷하게 가지고 계셔서 그런 것 같습니다.
저희가 특정 학과의 합격 확률을 산출하는 기준은 (여러 해 동안 가중평균된) 오르비의 표본 분포와 한국교육과정평가원이 발표하는 채점 자료, 그리고 전년까지의 입시 결과, 전년도와 올해의 입시 변수(정원 등) 변화 뿐입니다.
궁금한 것이 더 남았습니다.
P2011과 XN2011은 같은 원자료에서 산출됩니다.
그런데 P2011에만 이렇게 오류가 발생할 수 있나요?
(오류는 XN2011에도 있다는 거 압니다. 그렇지만 님의 주장대로라면 XN2011의 오류는 무시해도 될 만큼 미미한 수준입니다.)
p2011 에서의 오류의 크기가 아직 정확히 산출되지 않은 상태입니다.
평가원만이 보유하고 있는 실제 정확한 백분위 자료를 p' 라고 할 때,
|p2010 - p2011| 을 diff_a
|p2010 - p'2010| 을 diff_b
|p2011 - p'2011| 을 diff_c
라고 하면,
현재, diff_a 가 diff_b와 diff_c 보다 큰 것 같은 건 거의 확실해 보입니다만, (즉, p2010 은 비관적으로, p2011 은 낙관적으로 추정됨)
diff_c 는 아직 계산하는 중이기 때문에 현재로서는 오류의 크기를 정확히 알지 못합니다. diff_c 를 추정하는 데 있어 상당히 중요한 변수가 최상위권에서의 '수시 납치' 비율인데요, 그 값을 계산하기 위한 자료를 취합하는 중인데, 그 값이 예상보다 작다면, 의외로 p2011 이 꽤 정확할 수도 있습니다.
그렇다면 diff_c가 예상대로 라면 p2011이 정확성이 떨어진다는 말씀이시군요.
그렇다면 xn2011에서의 오류가 미미하다는 이유는 무엇인지 궁금합니다.
xn2011 에서의 오류가 미미하다는 말씀은 언제 드렸지요?
xn2011 에서의 오류는 fait accompli '11 에서 다룬 모든 학과의 최종 합격선이 발표되는 2월 말이 되어야 알 수 있는 값입니다.
그 값의 크기에 대해서는 지금 알 수 있는 바가 없습니다.
아마 2월 말이 되면, 모든 학과의 75%, 66%, 50%, 33%, 25% 합격확률 선마다 실제로는 몇 개 학과에서 합격이 가능했는지를 확인하는 절차가 있을 거에요.
예상이 정확했다면 75% 합격 확률선에서는 4개 중 3개 학과에 합격이 가능했어야 했을테고,
33% 확률선에서는 3개 중 1개 학과에 합격이 가능했어야 했을테고, 등등이겠지요?