미분가능과 도함수연속성
게시글 주소: https://orbi.kr/00068839810
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
삼전 씨발놈들아 0
왜 자꾸 떨어져서 단타도 못치게 하냐고.
-
수2 문제 질문 0
수2문제인데 피램국어에있어서 ㅋㅋㅋㅋㅋ 풀어봄 답 5번이 맞을까요??답 5번이...
-
현역 32411 3
영어를 너무 망쳤는데 이 성적이면 어디까지 가능한가요? 중경외시 가고 싶은데...
-
미적분학 교재는 2
보통 뭘 쓰나요 겨울에 공부 좀 해보려고하는데
-
그건 바로 애니메이트와의 거리임
-
탐구 선택 1
물지하려다가 탐구 점수가 너무 낮아서 사문정법으로 런할까 고민중입니다 사탐두개...
-
님아. 0
-
리젠 죽었잖아~ 2
살려내야할거 아니야~
-
올해 대학 붙여놓고 1학기 하고 군입대 후 군수 vs 1학기 후 휴학반수 한뒤...
-
지고쿠 지고쿠 7
-
참 좋아하는 과목이고 이걸로 돈도 벌지만 나는 출제도 하고 과외도 하지만 내...
-
수2 극한 7
y= 1/절댓값(x-1)에서, 발산인 이유가 x=1에서 만나지 않아서 인가요...
-
비문학 졸라 어려워요 시간 개 오래 걸림
-
뭔가 설렌다
-
쪽지주세요……. 갖고싶음……
-
하실분 구해요ㅠㅠ 제가보유중 좀떠싸게해드릴게여..
-
귀엽긴하네ㅋㅋㅋ
-
기차지나간당 6
아마도
-
인프라의 차이가 아니라 자녀의 교육에 얼마나 조기에 투자하고 적극적으로 투자했냐의...
-
남는 곳은 싹다 술집인데 1월달이 너무 두려워서 못하겠음... 혹시 1월달에...
-
ㅇㄱ ㅈㅉㅇㅇ? 3
https://m.khan.co.kr/article/202304272204025#c2b
-
지금 탐구 개념하고 있고 2주안에 끝내는 게 목표입니다 (물지) 그리고 복습...
-
사탐 선택과목 찾습니다 12
사문은 고정했고 만백 고려시 생윤/정법/경제 중 3C1 해야하네요...
-
1.국수 선택과목 로또 2.탐구 선택과목 로또 3.원서질 눈치싸움 반박 대환영
-
지금 합격한(합격할) 25학번 의대생들 입학 취소시키자는건데 그렇게 내년에도 계속...
-
“제발 나가줘“ “제발 돌아와줘“
-
일하다 시기를 놓쳤네요ㅠ 지금 순번도 컨설팅 가능할까요?
-
부탁드립니다ㅠ 교차는 당연히 생각하고 있습니다ㅠ
-
칸나 오늘 졸업일이구나 11
-
정병호 내년에 프메 + 원솔멀텍 하려 하는데 대치 현강 생각해보면 일주일에 나올수...
-
1컷 48은 뭐 좆같지만 넘어가더라도 2컷 44 3컷 42? 이건 도무지 인정 못한다
-
그 과목 못하는사람이라는뜻임?
-
수능친게 엊그제 같은데
-
현역이 정시로 3
부경전충 문과 간거면 잘 간거임?
-
여캐일러 투척 15
3일차(?)
-
홀로 보내게 생겼구만...
-
졸린기상 5일차 1
오늘도 힘내봅세
-
탐구 하나는 생1할건데 나머지 하나를 못정하겠습니다 투포좀요
-
그릇 새로 삼 2
오늘부터 1일1컵라면 하기로 했다
-
연고대 0
07이고 현재 내신 2점대 초 정도인데 정시로 갈거여서 기말부터 버리려고요 생기부도...
-
아무 치대나 가능할까요..?
-
공부좀 불안한 상태로 그만하고 싶음
-
제 주변 의반 친구들은 그냥 안넣고 성적표 기다리길래.. 다른분들은 어떤가요
-
숭배해라 대 르 비
-
ㅈㄱㄴ
-
블부이 기상 4
졸려
-
기상 완료 오늘도 ㅍㅇㅌ
-
의대에서도 본1 내신망하면 휴학하고 내신 리셋했는데 1
고1도 내신 망하면 그냥 리세마라 하는게 재수 삼수 하는것보다 백배는 나아보임...
-
킹받네 지도 내년에 고3이면서 ㅠ
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=