이거 설명해주실 천사 있나요? (수학)
게시글 주소: https://orbi.kr/00068833790
이 명제가 항상 참이라는 데 이해가 가지 않습니다..
예를 들어 위 그래프처렁 f의 증감이 바뀌면 역함수가 존재할 수 없는거 아닌가요??
사실 며칠 전에 올렸던 질문인데 해결하지 못해 한 번 더 올립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
7월이 끝난다는 말이에요
-
현재 재수생이고 재종수업 듣다가 갈수록 별로여서 드랍하고, 주변 사람들이...
-
심찬우 교재 3
심찬우 책 품절이라는데 이제 못사는거임?
-
2324수능수학 0
왤케 둘이 비슷해 보이지 전체적인 시험의 느낌이
-
에너지 드링크 아닙니다 커피 아닙니다 님들 그 동남아 음식같은거 먹을 때 뿌려먹는...
-
이혼얘기에 별의별 무거운 얘기 오가면서 싸우는데 진짜 아무 감흥도 안드네.....
-
내 실력이 부정되는 느낌이네
-
모의고사 칠때 20문제중에서 세계지도 한번은 나오나요? 제가 세계지도가 머릿속에서...
-
밤이 되었습니다 0
마피아는 고개를 들어 이 밤의 희생자를 지명하세요. 저 말고요..님.
-
100일기적 드가자
-
병훈쌤 핀셋 4점모 파이널 문제검토좀 잘 해주세요.. 0
지금까지 3회 배부되었는데 모든 회차에 한번씩 문제오류있는게 맞나요..ㅠㅠ
-
대충 6모 9모 영어어려움 쉬움 강한 위협 약한 위협 어쩌구
-
자만했건만 적정시간이 20분이구나 .....
-
음
-
스스로를 믿는 것부터 시작해야 함. 그 다음은 선지를 판별 할 수 있는 개념 학습...
-
안녕하세요, 여러분의 꿈의 열쇠를 찾고 조여주는 사람들 [몽키스패너]입니다! *본...
-
진짜 도움됐다싶은 토픽 있으시면 말씀 부탁드립니다
-
이번에 14133이라 3합5 과탐절사 필수 맞추긴했는데 9랑 수능에도 맞춰야되는데...
-
수업준비를 이렇게 열심히하는데 진심 순수 궁금 나는 진자 존나 공부박에 할게 없는데 ㅈ ㄴ 게으르고
g(x)라고 쓴거부터가 함수 전제로 한거 아니노
맞아요
1ㄷ1대칭함수 이면서 y=x대칭 관계여야 역함수 라고 말할 수 있어요
제 예시가 잘못되었단 말씀인가요??
명제가 잘못된거같은데 어디서 나온 명제죠?
증가함수이면서 y=x대칭
f가 국소적으로 감소할 수도 있는거 아닌가요..?
조건에의해서 f(x+1)=f(x)+1이니 증가만합니다
아닙니다 그조건으로 증가함수라는 것을 보장할수는 없습니다
ㅈㅅ합니다
제가 쉽게 설명해드리자면 예시처럼 f증감이 바뀌면 미분가능함수라서 미분계수가 0인지점이 생기는데 그렇게 된다면 g의 미분계수가 무한대로 발산하기 때문에 미분가능 조건에 모순됩니다
요약:g도 미분가능하니깐 f 증감바뀌면 ㄴㄴ
역함수가 아니라면 가능한 거 아닌가요? 그냥 y=x 대칭이어도 발산하는 부분이 존재하는 겁니까??
당연하죠 미분계수0을 y=x대칭 시키면 미분계수 발산하죠
그림을 잘못 그리셨어요 대칭시켰을때 g 모양이 저렇게 안나옴
f g가 y=x 대칭이다 & f g가 실수 전체 집합에서 미분가능하다 -> f' & g' != 0
f(x+1) = f(x) + 1 에서 양변 미분하면 f'(x+1) = f'(x) 인데 f' != 0 이므로 f' 는 증가만 하거나 감소만 하는 함수
그런데 f(x+1) = f(x) + 1 에서 x좌표가 1 큰게 y 좌표가 1 크므로 증가함수
그러므로 f는 일대일대응인데 g는 f와 직선 y=x에 대칭
따라서 g는 f의 역함수