이거 설명해주실 천사 있나요? (수학)
게시글 주소: https://orbi.kr/00068833790
이 명제가 항상 참이라는 데 이해가 가지 않습니다..
예를 들어 위 그래프처렁 f의 증감이 바뀌면 역함수가 존재할 수 없는거 아닌가요??
사실 며칠 전에 올렸던 질문인데 해결하지 못해 한 번 더 올립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 프사가 0
나보다 몬생김 라고할뻔
-
https://naver.me/55rQNhHl 변호사 수익 상하방 차이가 넘 심해서...
-
하루에 두명씩 쓴다매ㅠ
-
무테 > 은테 되는 게 글 작성가능하게 된 것보다 더 빨리됨 ㅋㅋㅋ
-
학벌을 꼭 높여야만 하나 이런 생각을 하게됨 이제 하도 여러전형이 생겨서 그...
-
오늘은 금요일이니 빈칸으로 연습 해볼게요 The spacecraft...
-
행복해
-
나한테만 집중해주는 사람이랑 연애하고 싶다
-
1시 반에 자야겠다
-
슬슬 자볼가 6
ㅂㅇ
-
맥주 한 잔만 마신 나 자신 칭찬해
-
어느 작은 우체국앞 계단에 앉아~
-
추워 6
이불안에들어가잇기,,
-
제목 그래도 지거국 공대 목표입니다. 나이는 23살이고 군 전역 후 2학년...
-
그 사랑이 아파도 기다릴게 여기서 나
-
맞팔하실분 1
구합니다
-
게토레이엔딩일줄 ㄷㄷ..
-
아오
-
점심 간짜장 저녁 불고기 피자 야식 황올 맥주
-
서울대 지망이라 영어를 드랍하고 싶은데(사실 거의 드랍인 상태긴해요) 또 혹시...
-
밤꽃 6
ㅇ
-
보통 재종같은곳에서 11
눈 내리깔고 다니지않나요? 왜 다 눈마주치지
-
내가 오래 생각해봤는데 학교를 계속 높여서 해결될게 아닌거같음 ㅅㅂ내가 아직도...
-
그렇다 4
나는 정벽이의 단단하고 고결한 내면이 좋았었다 그는 없다
-
젠장 12
난 또 기만을 봐버렸어 오르비하면 잘생기지 마라
-
잇올에서 5
동성이랑 눈 마주치면 싸우자는 의미 맞죠?
-
고2도 더프 칠수 있는 학원 없음???
-
아침마다 ㅈㄴ기분안좋고 오전내내 기분 안 좋은데 공부 시작하면 공부에만 집중해서...
-
햄 이거샀는데 2
어떤지 평가좀
-
우아한 논술 학원 다녀보신 분 있을까요?
-
..
-
전자 드럼통 되나
-
나 이번주 아무것도 안했는데 왜 토요일
-
재수생입니다 현역때 예체능 했었습니다 논술 학원 다녀보고 싶은데 이쪽 길을 안...
-
학원에서 뉴런에서 본 기출 그대로 나왔는데 그땐 따로 개념강의 안 듣고 바로 풀어노...
-
내 돈 내놔 4
나스닥 이...
-
기억하라우리의줅은함성을
-
뭔기능임?
-
라는 꿈을 꾸다가 깼다.
-
아이디어vs뉴런 0
작수기준공통1-12,16-19찍맞없이 다 맞았고 지금 개정시발점듣고있는데 다음 커리...
-
지2는 잘고른듯 4
빌보드에 물2화2생2는 존나 널렸는데 (특히물2ㅅㅂ) 지2는 나름 마이너함 ㅎㅎ
-
수능장가서 20문제 다 풀 자신이 없어
-
바닥에 계란 떨어트렸을때
-
꽃은 보기만해도 기분이 좋아진다니깐
-
몇 개월 전이긴 해도 저능부엉이님 정상화님 그리고 다른 재밌는 분들 많았는데 수가...
-
인생에 유일한 자랑거리다
-
나만 왜 아직 열등감이 심한거같지? 대학을 막 못간건 아닌데 뭔가 모르겠는데 그냥...
-
사탐런 하는 거라 내신으로도 안 해봤고 완전 처음 해봐요 그리고 생명, 지구랑...
-
얘는 볼때마다 다이나믹하네 시발
g(x)라고 쓴거부터가 함수 전제로 한거 아니노
맞아요
1ㄷ1대칭함수 이면서 y=x대칭 관계여야 역함수 라고 말할 수 있어요
제 예시가 잘못되었단 말씀인가요??
명제가 잘못된거같은데 어디서 나온 명제죠?
증가함수이면서 y=x대칭
f가 국소적으로 감소할 수도 있는거 아닌가요..?
조건에의해서 f(x+1)=f(x)+1이니 증가만합니다
아닙니다 그조건으로 증가함수라는 것을 보장할수는 없습니다
ㅈㅅ합니다
제가 쉽게 설명해드리자면 예시처럼 f증감이 바뀌면 미분가능함수라서 미분계수가 0인지점이 생기는데 그렇게 된다면 g의 미분계수가 무한대로 발산하기 때문에 미분가능 조건에 모순됩니다
요약:g도 미분가능하니깐 f 증감바뀌면 ㄴㄴ
역함수가 아니라면 가능한 거 아닌가요? 그냥 y=x 대칭이어도 발산하는 부분이 존재하는 겁니까??
당연하죠 미분계수0을 y=x대칭 시키면 미분계수 발산하죠
그림을 잘못 그리셨어요 대칭시켰을때 g 모양이 저렇게 안나옴
f g가 y=x 대칭이다 & f g가 실수 전체 집합에서 미분가능하다 -> f' & g' != 0
f(x+1) = f(x) + 1 에서 양변 미분하면 f'(x+1) = f'(x) 인데 f' != 0 이므로 f' 는 증가만 하거나 감소만 하는 함수
그런데 f(x+1) = f(x) + 1 에서 x좌표가 1 큰게 y 좌표가 1 크므로 증가함수
그러므로 f는 일대일대응인데 g는 f와 직선 y=x에 대칭
따라서 g는 f의 역함수