2025年 사관학교 27,28,29,30 Solution
게시글 주소: https://orbi.kr/00068826272
오늘 시행된 25학년도 사관학교 1차시험 수학의 난이도는 꽤 높은 편으로, 변별문항의 난이도 역시 작년 수능에 지지 않는 시험지었습니다.
공통 영역에서 주목할만한 문항들은 11번, 15번, 20번, 21번, 22번으로 특수한 상황에서 일반적인 상황으로의 함수 세팅으로 변화하는 경향을 잘 보여주는 문항들로, 특수할 때를 가정해서 풀이하는 방법보다는 주어진 조건들을 기저적인 상황에서부터 차근차근 따져보는 능력을 요구하고 있습니다.
기하 문항은 공통 영역에 비해 다행히 전형적인 편으로 26번, 27번 같은 지뢰 문항들을 잘 해결하였다면 공통에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
27. #복잡한 계산을 만나면 잠시 차분해지자 #내적의 기하적 의미
도형 안에 내분점 / 외분점이 존재하고 길이비가 주어질 때 경험적으로, 사교좌표계나 t,1-t 내분점 공식을 이용해 만나는 교점 벡터를 표현하고, 이를 주어진 길이나 내적값을 이용해 연산하는 유형이 주로 출제되었었죠.
"아! 나는 뭔가 많이 아는게 있어!" 라고 기저벡터를 세팅.... 하면
좌표로 표현하면 뭔가 쎄한 느낌이 들며 내가 계산을 제대로 한게 맞나..? 하는 의문을 들게 하는 숫자들이 튀어나옵니다.
여기서 계산을 밀고 나가는 순간.. 빡빡한 공통 영역에서의 시간 소모로 인해 28, 29, 30에 치명적인 타격을 주게 되는 지뢰같은 문항입니다. (22.06.27과 비슷한 느낌입니다)
기하러로서 결론부의 AB+AC를 2AM으로 평균벡터를 이용하고 싶은 마음이 들지만 참아야 합니다..! 내적의 연산 성질을 이용해 식을 분리, 내적의 기하적 의미가 사영곱임을 이용하면 너무나 간단하게 해결하실 수 있습니다.
28. #이차곡선의 정의요소 #코사인 법칙1. 이차곡선의 정의요소 이용하기 -> PF'-PF=2a에서 PQ가 날라가니 QF'=2a를 얻습니다.
2. 이차곡선의 정의요소 이용하기 -> Q는 쌍곡선 위의 점이니 QF-QF'=2a에서 QF=4a를 얻습니다.
3. 조건 뜯기 -> (나)에서 둘레의 길이가 20이라 주어졌으니, PF=PQ=10-2a를 얻습니다.
4. 부분/ 전체길이 이용하기 -> PQ+QF'=10이고, 타원의 장축의 길이가 18이니 PF=8=10-2a, a=1을 얻습니다.
5. 결론부 확인 - 코사인 법칙의 이용 -> P의 x좌표가 궁금하니, 삼각형의 아랫변 길이가 궁금합니다 -> 코사인 법칙을 이용해 구하는 값을 얻습니다.
29. #끼인 평면의 작도 #코사인법칙
1. 끼인 평면 작도하기 -> 주어진 도형의 바닥이 직사각형 베이스이기에 수선의 발의 위치가 명확합니다. 수선의 발 X를 내리고 O와
연결하면 끼인 평면 AXO를 작도할 수 있습니다.
2. 공간도형 길이 분석하기 -> 모서리 길이 BO=2, BO'은 BD의 중점이니 BO'=3/2, XO'=BO'-BX로 주변 길이를 이용해 XO'을 구한 후 피타고라스를 통해 OXO'을 분석합니다.
3. 결론부 확인, 코사인 법칙의 당위성 -> 결론부가 BH의 제곱을 묻고 있고, 삼각형 BXH의 두 변과 호환되는 둔각에 대응하는 예각을 알고 있으므로, 코사인 법칙을 이용해 구하는 값을 얻을 수 있습니다.
30. #벡터의 합/차 #벡터의 최대/최소 #23.06.30 변형
1. 주어진 기하 상황 인지하기 / 작도하기
2. 벡터는 평행이동이 자유로움 -> OP+OQ=OX로 표현, OQ를 도형으로 생각하고 OP만큼 평행이동하였다고 생각하며 X의 영역을 구합니다.
3. 최대/최소는 원의 중심을 기준으로 사고하기 -> 주어진 영역 안에서 Xmin, Xmax를 구합니다
4. 명확한 수직의 틀 -> 성분화를 통해 구하는 길이를 얻을 수 있습니다.
무더운 한여름임에도 불구하고 사관학교 시험에 응시하여 최선을 다하신 여러분, 혹은 각자의 위치에서 열심히 공부하고 계신 여러분,
변함없이 여러분을 응원하겠습니다 :D
오늘 하루도 정말 수고하셨어요!
읽어주셔서 정말 감사드려요 :)
0 XDK (+10,000)
-
10,000
-
옮평인듯ㅋㅋ
-
미적 백분위 68이 정시로 경희대 공대붙었다하면 믿김? 4
올해ㅇㅇ 5에가까운 4
-
진짜 여자분이 나오셔서 당황했음..
-
고2모고 3등급후-4초 떠요 이영수랑 이명학 중에 누구 듣는 게 더 좋을까요
-
쪽지 보냇습니다 2
확인 요망
-
누가 뭐라해도 잘 안들리더라 이게 정신건강이 안좋으면 가장 골때리는 점인데 이미 내...
-
의치한 목표면 사1과1이랑 과2중에 뭐가 낫나요? 12
의치한만 목표고 한의대 선호도가 큼, 수학에는 공부시간 많이 안쏟아도됨(높1권)...
-
근데 진성 옵창이 큐브 하다가 특정되는 경우도있음? 6
전적대 현적대 전부 까이고 거의 하루종일 오르비만 하던 사람이면
-
55분까지 아 +박제
-
쪽
-
옳은 게 뭔지 고민하다 보니 전부 오답이라는 결론이 나왔습니다
-
지2 조언구해요ㅜㅜ 13
삼수생 입니다 ㅜㅜ 내년에는 인서울 의대로 목표로 (정시) 하고 있고요 ㅜㅜ(ex:...
-
드립인거죠? 진짜 보내시는 분은 없겠죠? 설마…
-
진짜왔네
-
이게 아이돌 서바이벌이 아니라 재수 서바이벌 프로그램이라고??
-
내가 밉다..
-
본인은 대놓고 여자인데 어째 한 통도 안 왔지 텍스트에서 찐따 티나서 그런가 흑흑
-
재종 높반 1
이게 은근히 자극제임
-
커리좀정해줘요 9
히히
-
진짜 저 미모에 연의는 아니잖아.. 적당히 가져가야지...
-
깜짝퀴즈 9
‘가리키다’ 영단어로?
-
징징글보다 게이글이 낫다
-
세미 홍대병자라 대성 듣는데 PC에서는 자동 로그인 기능 지원도 안하고, 인강...
-
언제 국어 강사들과 함께 모고푸는 날이 있었는데 그때 펜을 안들고 와서 40분 동안...
-
지금 평가원 기준 88~92정도 나오는데 평가원 기출을 1년 전쯤에 보고(수1,2)...
-
제 주변에 논술합격한 친구들이 많은데 한명은 학원 3일 다니고 중앙대 합격한 애도...
-
고능아모임;;
-
왈끼얏호우 17
컹컹 옯컹컹 삣삐삣삐 왈끼끽
-
무슨 소리인가 하면 다 글은 모니터링함 그래서 심한글들은 다 내려감 근데도 시대갤을...
-
얼버잠 합니다
-
ㅇㅈ 5
-
수학 열심히하던데 좋은데 붙었을려나
-
어릴 때 연어먹으면 복어 홍어 해파리 냉채마냥 톡쏘는맛이 있는줄 알았는데 알러지였던...
-
사실 법사가 생김
-
개념은 오지훈t 꺼 듣는 중인데 다 듣고 나서 들을 만한 커리 추천해주세요
-
안녕하세요 올해 학교 입학하는데 제목 그대로 반수 고민을 하고 있습니다 옛날에는...
-
얼버잠 2
내일은 일찍 일어나야지… 굿밤~
-
정보들좀 보러가는데 무슨관몇층 마녀어쩌고저쩌고 마녀가뭔지 올해처음앎.. 난 애들볼 생각도안나든데
-
옆그레이드 8
이 말 재밌네요 제 상황이랑도 잘 맞고
-
으ㅡㅇㅁ
-
시대인재 뱃지까지 있었으면 완벽한데
-
삼수한 사람들아 3
삼수 인생 타격 크냐 남자 ㅇㅇ
-
윤성훈쌤 커리 1
각 강좌 몇월에 개강되나요?
-
6등박음 퉤
-
금테이상은 오르비에 과외글 올릴수 있게 바꼈네... 2
옛날 계정 예토전생 어케 못시키나?
-
연치 폭인거같네 6
컷이 721.5라는 얘기가 있음 헉
-
250921 5
아직도 왜 낸건지 모르겠음
-
너무조아용
23.06.30번 문항입니다!
완젼멋져요
고마워요!! 하이샵님 :)
시험지에 그린 그림만 보면 미적분 뺨 후려치는거같은데 진짜 꿀 맞나요????
미적분/기하 모두 장단점이 명확하다고 생각해요..!
기하는 그림이 복잡한 대신 계산량이 현저히 적은 편이에요 :)

시험지 정말…! 계산이 적네요
해설 쓰시느라 고생 많으셨어요
으아아ㅏㅏ 감사드려요 !!대충 10분걸리는 기하문제 기준
상황파악 + 그림 이쁘게 그리기 9분
계산 1분

완전공감합니다
지나가는 확통러입니다.형님 멋있습니다!!

칭찬 감사드려요..!!캬

와 전글에서는 미적보다 쉬워 보였는데 전혀 아닌것 같군요비쥬얼은 흉악해보이지만, 낯선 문항이 없기에 기하 기출학습이 잘 되어있다면 + 시간만 충분하시다면 편하게 해결하실 수 있을 문항들이에요..!!
고마워요 :)
기하라니 근본있네요

고마워요!天才
역시 기하는 약연 ㅋㅋㅋㅋㅋ
진짜 기벡 고수 치사토 찬양하기
기“벡”이 핵심일려나
헉
님
고마워요 질감님 :)
마지막문제 역벡터로 풀어도 예쁘게풀리더라고용
27번 그냥 피타 벅벅했는데