밥먹으면서 열심히 생각해봤습니다,,
f가 단순 다항함수 4차함수니까 f=ax^4 + bx^3 + cx^2 + dx + e 에서,
f(g(x))=ax^4/3 + bx + cx^2/3 + dx^1/3 + e
이식을 미분하면 (4/3)ax^1/3 + b + (2/3)cx^-1/3 + (1/3)dx-2/3 이어서 x=0에서 미분가능하려면 결국 c=d=0 이어야 하고
남은식만 보면 결국 연속함수기 때문에 결국 f(g)가 미분가능하다면 도함수 수렴값이 무조건 있는거 같네요
첨부하신 자료의 미분가능하지만 도함수 수렴값이 존재하지 않는경우는 삼각함수라는 특수성?(정의되진 않을 수 있어도 값자체는 무조건 -1과 1사이) 때문인거 같은데..
이 문제의 경우는 f에 g를 넣어도 지수부분이 분수긴 하지만 결국 다항함수(?) 의 특성때문에 미분가능하면 항상 도함수 수렴값이 존재하는게 아닐까.. 생각해봅니다
결론은 1. 존재함을 보이려면 다항함수기 때문에 x^1/3 을 대입한 다음 미분한결과를 관찰,
또는 미분계수의 정의에서 lim{f(x^1/3)-f(0)}/x 가 발산하지 않으려면 결국 f의 이차항,일차항계수는 무조건 0이어야 된다는걸 관찰(근데이건 결국 미분계수 정의를 쓰는거긴 하네요)
2. x^m+x^n+… 꼴 (m,n=유리수) 의 함수에서 미분계수의 정의를 썼을 때 그 극한값이 발산하지 않지만 도함수의 값이 수렴하지 않는 경우는 없는거 같아서 도함수 연속으로 풀어도 될것 같긴 한데.. 이부분은 잘 모르겠습니다. 귀류법으로 증명이 될거같기도 하고..
자세히 말씀드리자면...
일단 일반적으로
x = 0에서 미분가능하다
→ x = 0에서 도함수는 연속이다.
라는 명제는 당연히 거짓입니다.
반례야 질문자님이 아는 x²sin(1/x)이죠.
그래서 일반적으로는 이렇게 풀 수가 없어요.
저 함수가 이런 병리적 함수일지 어떻게 알아요.
하지만 이 문제에 한해서는 가능합니다.
발산은 3가지 종류가 있어요.
양의 무한으로 발산, 음의 무한으로 발산, 그리고 진동
만약 도함수의 극한이 양의 무한으로 발산하거나 음의 무한으로 발산한다면 미분계수 (극한식) 도 양의 무한으로 발산하거나 음의 무한으로 발산해서 존재하지 않음을 알 수 있지만
만약 도함수의 극한이 진동한다면 미분계수의 존재성은 모릅니다. 미분계수가 존재할 수도 있고 존재하지 않을 수도 있어요.
하지만 f‘(g(x))g’(x)의 극한을 풀어서 계산하면
얘가 발산을 해도 진동하면서 발산하지는 않겠구나...
라는건 쉽게 알 수 있습니다.
그러므로 진동의 가능성이 제거된 상태에서
귀류법을 사용해 도함수의 극한이 존재하지 않는다면 미분계수 또한 존재하지 않으므로 모순임을 보이면 됩니다.
그래서 결론을 드리자면
1. 일반적으로는 미분가능성은 도함수의 연속성을 보장하지 않는다. 그러므로 미분가능하다고 해도 도함수가 수렴한다고 할 수 없다.
다만
ㅇ 함수 p(x)가 x = a에서 연속이고
ㅇ 도함수 p’(x)가 x = a 주변에서 미분가능하고
ㅇ 도함수 p’(x)가 x → a일 때 진동하지 않는다면
lim (x→a) p‘(x) = p’(a) (양의 무한 또는 음의 무한을 포함하여) 가 성립하므로 이를 사용해 미분계수를 구할 수 있다.
제 의견이 틀릴수도 있지만 말해보자면 h(x)는 x가 0이 아닌 부분에서는 미분가능한 함수이고, x=0에서 미분계수가 필연적으로 존재 -> 좌,우극한값이 동일
위의 자료에 의하면 도함수의 연속성을 조사해서 판별할 수 있다고 생각
1. 질문은 제가 국어가 약해서 ‘저것’의 의미를 정확하게 모르겠네요..
위 답변으로 2는 된다고 생각했습니다
1 질문은 h'(x)의 x=0에서의 좌우극한이 수렴하는 값으로 존재함을 보일 수 있는가? 이었습니다
이렇게하면 될거같습니다
일단 답변 감사합니다
좀 더 고민해보겠습니다
밥먹으면서 열심히 생각해봤습니다,,
f가 단순 다항함수 4차함수니까 f=ax^4 + bx^3 + cx^2 + dx + e 에서,
f(g(x))=ax^4/3 + bx + cx^2/3 + dx^1/3 + e
이식을 미분하면 (4/3)ax^1/3 + b + (2/3)cx^-1/3 + (1/3)dx-2/3 이어서 x=0에서 미분가능하려면 결국 c=d=0 이어야 하고
남은식만 보면 결국 연속함수기 때문에 결국 f(g)가 미분가능하다면 도함수 수렴값이 무조건 있는거 같네요
첨부하신 자료의 미분가능하지만 도함수 수렴값이 존재하지 않는경우는 삼각함수라는 특수성?(정의되진 않을 수 있어도 값자체는 무조건 -1과 1사이) 때문인거 같은데..
이 문제의 경우는 f에 g를 넣어도 지수부분이 분수긴 하지만 결국 다항함수(?) 의 특성때문에 미분가능하면 항상 도함수 수렴값이 존재하는게 아닐까.. 생각해봅니다
결론은 1. 존재함을 보이려면 다항함수기 때문에 x^1/3 을 대입한 다음 미분한결과를 관찰,
또는 미분계수의 정의에서 lim{f(x^1/3)-f(0)}/x 가 발산하지 않으려면 결국 f의 이차항,일차항계수는 무조건 0이어야 된다는걸 관찰(근데이건 결국 미분계수 정의를 쓰는거긴 하네요)
2. x^m+x^n+… 꼴 (m,n=유리수) 의 함수에서 미분계수의 정의를 썼을 때 그 극한값이 발산하지 않지만 도함수의 값이 수렴하지 않는 경우는 없는거 같아서 도함수 연속으로 풀어도 될것 같긴 한데.. 이부분은 잘 모르겠습니다. 귀류법으로 증명이 될거같기도 하고..
저도 일개 수험생인지라 수학적으로 맞는진 모르겠어서 그냥 의견으로 들어주세요 ㅠㅠ
답변 감사합니다
수2 범위는 넘어가는 거 같은데….어렵네용
이거 미적 맞죠?…차수의 유리수가 들어가는 건 참 보는디
네 미적분 문제에요
h(x)의 좌극한 그리고 우극한이 x=0에서 존재함을 보여야 함
h(x)는 다항¹/다항² (x=/=0)꼴로 정리되고 x=0에서 연속임
h는 유리함수 내지 다항함수라는 점을 이용하면
귀류) h(x)가 x=0에서 발산하면 x=0에서 미분가능하다는 문제의 조건을 만족할 수가 없음
따라서 좌극한, 우극한이 존재함
그러므로 도함수의 연속성 풀이를 사용할 수 있음
밥먹기 전부터 2시간가량 머리 싸맨 후 얻은 교훈
그냥 복잡해보이면 미계정의 써야겠다...

이것도 정의로 풀라고 낸 문제도함수의 연속(정확하겐 좌우극한의 일치)로 풀어도 상관없어요.
f(x)가 g(x)의 치역에서 연속이라는 전제하에서는 도함수의 좌극한과 우극한을 비교하여 답 내기 가능
f(0)은 다항함수라 무조건 연속하게 존재. 그러므로 오류는 없음
그러나 저는 미분계수의 정의를 써서 푸시는걸 추천드려요. 그게 더 빠른 경우가 대다수여서..(발산하는게 곱해져 있는 경우에 한정)
아 1번질문 댓글보고 알았네요. h'(0)의 값은 x=0에서 미분가능해야 하므로 무조건 수렴하는 형태일겁니다
f(x)가 결정되지 않아도 h(x)는 연속함수이므로,, 좌우극한 같다의 논리를 써도 상관이 없고요
말을 빙빙 돌렸지만, 결국 마지막 문장에 하고싶은말이 다 담긴거같아요
네 이해됐습니다 답변 감사합니다
간단하게 도함수의 연속을 쓸 조건이 원함수의 연속이라고 판단하시고 쓰면 될거에요!
화이팅이에요
f(g(x))가 x = 0에서 미분가능하다고요?
f(g(x))는 {x|x≥0}에서만 정의되는 함수라 안될 텐데...
왜 정의역이 그렇게 돼죠?
아 아니구나
죄송합니다. 제곱근으로 착각했어요
자세히 말씀드리자면...
일단 일반적으로
x = 0에서 미분가능하다
→ x = 0에서 도함수는 연속이다.
라는 명제는 당연히 거짓입니다.
반례야 질문자님이 아는 x²sin(1/x)이죠.
그래서 일반적으로는 이렇게 풀 수가 없어요.
저 함수가 이런 병리적 함수일지 어떻게 알아요.
하지만 이 문제에 한해서는 가능합니다.
발산은 3가지 종류가 있어요.
양의 무한으로 발산, 음의 무한으로 발산, 그리고 진동
만약 도함수의 극한이 양의 무한으로 발산하거나 음의 무한으로 발산한다면 미분계수 (극한식) 도 양의 무한으로 발산하거나 음의 무한으로 발산해서 존재하지 않음을 알 수 있지만
만약 도함수의 극한이 진동한다면 미분계수의 존재성은 모릅니다. 미분계수가 존재할 수도 있고 존재하지 않을 수도 있어요.
하지만 f‘(g(x))g’(x)의 극한을 풀어서 계산하면
얘가 발산을 해도 진동하면서 발산하지는 않겠구나...
라는건 쉽게 알 수 있습니다.
그러므로 진동의 가능성이 제거된 상태에서
귀류법을 사용해 도함수의 극한이 존재하지 않는다면 미분계수 또한 존재하지 않으므로 모순임을 보이면 됩니다.
근데 이렇게 복잡하게 할 필요는 없고
그냥 미분계수로 접근하시면 됩니다.
그래서 결론을 드리자면
1. 일반적으로는 미분가능성은 도함수의 연속성을 보장하지 않는다. 그러므로 미분가능하다고 해도 도함수가 수렴한다고 할 수 없다.
다만
ㅇ 함수 p(x)가 x = a에서 연속이고
ㅇ 도함수 p’(x)가 x = a 주변에서 미분가능하고
ㅇ 도함수 p’(x)가 x → a일 때 진동하지 않는다면
lim (x→a) p‘(x) = p’(a) (양의 무한 또는 음의 무한을 포함하여) 가 성립하므로 이를 사용해 미분계수를 구할 수 있다.
2. 그냥 미분계수의 정의를 쓰는게 훨씬 좋다.
네 감사합니다!!! 이해됐어요