-
들고 가는 거 자체가 안되는 건가요?
-
새로운 꿈을꿔
-
법학과 로스쿨 28
검사 지망하는 07 정시파이터 입니다 요즘 검사, 법학과 로스쿨 관련해서 궁금한 게...
-
1페에서 4개틀림.
-
독해 피지컬 기를려고 살려는데 대체 어딴갈 사야되나요..? 에센셜 팩 사면 될까요..?
-
ㄹㅇ 러닝타임도 존나긴데 과제도 존나많음 그렇다고 강의가 그렇게까지 좋은것도 아니고...
-
아토피심하다
-
워크북 하려하고있는데 원래 쎈발점 다음 뭐해야하나요
-
올해 품절되는 교재는 전부 재입고 예정 없는건가요... PT 품절돼서 못 삼 ㅜ
-
서바 서바리부트 123 다 시간없어서 76 77 이 위로는 안올라가는데.. 원래 이런가요..?
-
시컨 브릿지 23, 24, 25중에 어느거푸는게 좋나요 0
자료는 다 있어요
-
아니 근데... 네티즌들이 무분별하게 '낙태'라고 억측하는건 진짜 고소당할것...
-
자퇴하고 싶다 5
오늘도 로또를 산다
-
갈취인데 당하실분 없나요?
에프 3이 영
답이 1번인가여?
![](https://s3.orbi.kr/data/emoticons/factbot/08.png)
혹시 답이 이건가요f(x) = x(x - 3)² (x <= 3)
이거같긴 한데
풀이 부탁드여요 냅
결국 int 0 to 5 |f(x)| dx는
반드시 int 0 to 3 f(x) dx 보다
같거나 클 수밖에 없으니까
이 두 값이 같아지려면
구간 [3, 5]에서 f(x) = 0이어야 하고
실수 전체 집합에서 미분가능하므로
f(3) = f'(3) = 0이 되어야 합니다
이러면 깔끔하네요!
우극한과 좌극한으로 나누어 생각해보면 둘 모두 구간 [0, 5]에서 함수 |f(x)|를 적분한 값과 구간 [0, 3]에서 함수 f(x)를 적분한 값이 일치해야 수렴.
미적분학의 기본 정리에 따라 g'(x)=|f(x)|로 두고 주어진 정적분을 g(5)-g(x)-(g(5)-g(0))=-(g(x)-g(0)) 정도로 바꾸어보면 우극한은 -g'(0)으로 수렴하고 좌극한은 g'(0)으로 수렴.
따라서 -g'(0)=g'(0)이 되어야 주어진 극한이 수렴. 이때 g'(x)=|f(x)|이므로 f(0)=0
x가 3 이하일 때 f(x)는 삼차함수의 일부이므로 f(x)=x^3+ax^2+bx (a, b는 상수). x가 3 초과일 때 f(x)=h(x)라 하자. 이때 문제 조건에 따라 h(x)는 x>3에서 미분 가능한 함수이다.
이때 구간 [0, 5]에서 |f(x)|를 적분한 값과 구간 [0, 3]에서 f(x)를 적분한 값이 일치하므로
구간 [0, 3]에서 |x^3+ax^2+bx|를 적분한 값에 구간 [3, 5]에서 |h(x)|를 적분한 값을 더한 것이 구간 [0, 3]에서 (x^3+ax^2+bx)를 적분한 값과 같아야 한다.
만약 구간 [0, 3]에서 곡선 y=x^3+ax^2+bx의 그래프가 x축보다 아래에 위치하지 않는다면 |x^3+ax^2+bx|=x^3+ax^2+bx가 되어 구간 [3, 5]에서 함수 |h(x)|를 적분한 값이 0이 되어야 함을 확인할 수 있다.
그런데 구간 [3, 5]에서 곡선 y=|h(x)|의 그래프가 x축보다 아래에 위치하지 않으므로 h(x)=0이 되어야 하고, 이때 함수 f(x)는 x=3에서 미분 가능하므로 곡선 y=x^3+ax^2+bx가 x=3에서 x축에 접해야함을 확인할 수 있다.
이를 만족하는 곡선은 y=x(x-3)^2이다.
이 경우 f(1)=1*(-2)^2=4가 되어 정답이 1번일 것이라 추측할 수 있겠는데... 구간 [0, 3] 내의 구간 [p, q]에서 곡선 y=x^3+ax^2+bx 의 그래프가 x축보다 위에 위치하는 경우에는 어떻게 정리해야할지 잘 모르겠네요
위에 댓글 논리 따라가면 구간 [3, 5]에서 h(x)=0이 될 수밖에 없음을 확인하고 y=x(x-3)^2 발견할 수 있네요! 2023학년도 대학수학능력시험 9월 모의평가 14번 ㄱ과 함께 보면 좋겠네요