-
스나 7
그 과에서 점수가 130점정도 차이나는 과 스나 가능함?
-
한완수 샀는데 3
23수능 88점인데 굳이인가요? 좀 안본지 되긴함 개념
-
괜찮은 집 애들 얘기가 무슨 소리인가요? 전혀 이해를 못해서
-
갑자기 진학사 싹다 분석중 뜨네요
-
전북대 충원 0
제가 전북대 학종 공과계열1 예비87을 받았는데 오늘 28명빠졌습니다 아직 2차...
-
서강 성대 14
서강 사회과학vs 성대 사회과학 어디 더 선호하시나요
-
추천해주셈뇨
-
서울대 내신평가 4
03년생(4수) 평반고 내신 3.4인데 체육 미술 같은거는 b 이고 가정이랑 기술...
-
미적 노베인데 대학가기전에 혼자서 보면 많이 어려울까요
-
가천의 논술 빠질사람있음? 제발.
-
서울을 동경하긴하지만 의대를 포기해야 할까요
-
너.. 오르비 해? 닉네임이 xxxxxx이야? 아하 ~ 이럴용기가 현실에서 잇다구요?
에프 3이 영
답이 1번인가여?

혹시 답이 이건가요f(x) = x(x - 3)² (x <= 3)
이거같긴 한데
풀이 부탁드여요 냅
결국 int 0 to 5 |f(x)| dx는
반드시 int 0 to 3 f(x) dx 보다
같거나 클 수밖에 없으니까
이 두 값이 같아지려면
구간 [3, 5]에서 f(x) = 0이어야 하고
실수 전체 집합에서 미분가능하므로
f(3) = f'(3) = 0이 되어야 합니다
이러면 깔끔하네요!
우극한과 좌극한으로 나누어 생각해보면 둘 모두 구간 [0, 5]에서 함수 |f(x)|를 적분한 값과 구간 [0, 3]에서 함수 f(x)를 적분한 값이 일치해야 수렴.
미적분학의 기본 정리에 따라 g'(x)=|f(x)|로 두고 주어진 정적분을 g(5)-g(x)-(g(5)-g(0))=-(g(x)-g(0)) 정도로 바꾸어보면 우극한은 -g'(0)으로 수렴하고 좌극한은 g'(0)으로 수렴.
따라서 -g'(0)=g'(0)이 되어야 주어진 극한이 수렴. 이때 g'(x)=|f(x)|이므로 f(0)=0
x가 3 이하일 때 f(x)는 삼차함수의 일부이므로 f(x)=x^3+ax^2+bx (a, b는 상수). x가 3 초과일 때 f(x)=h(x)라 하자. 이때 문제 조건에 따라 h(x)는 x>3에서 미분 가능한 함수이다.
이때 구간 [0, 5]에서 |f(x)|를 적분한 값과 구간 [0, 3]에서 f(x)를 적분한 값이 일치하므로
구간 [0, 3]에서 |x^3+ax^2+bx|를 적분한 값에 구간 [3, 5]에서 |h(x)|를 적분한 값을 더한 것이 구간 [0, 3]에서 (x^3+ax^2+bx)를 적분한 값과 같아야 한다.
만약 구간 [0, 3]에서 곡선 y=x^3+ax^2+bx의 그래프가 x축보다 아래에 위치하지 않는다면 |x^3+ax^2+bx|=x^3+ax^2+bx가 되어 구간 [3, 5]에서 함수 |h(x)|를 적분한 값이 0이 되어야 함을 확인할 수 있다.
그런데 구간 [3, 5]에서 곡선 y=|h(x)|의 그래프가 x축보다 아래에 위치하지 않으므로 h(x)=0이 되어야 하고, 이때 함수 f(x)는 x=3에서 미분 가능하므로 곡선 y=x^3+ax^2+bx가 x=3에서 x축에 접해야함을 확인할 수 있다.
이를 만족하는 곡선은 y=x(x-3)^2이다.
이 경우 f(1)=1*(-2)^2=4가 되어 정답이 1번일 것이라 추측할 수 있겠는데... 구간 [0, 3] 내의 구간 [p, q]에서 곡선 y=x^3+ax^2+bx 의 그래프가 x축보다 위에 위치하는 경우에는 어떻게 정리해야할지 잘 모르겠네요
위에 댓글 논리 따라가면 구간 [3, 5]에서 h(x)=0이 될 수밖에 없음을 확인하고 y=x(x-3)^2 발견할 수 있네요! 2023학년도 대학수학능력시험 9월 모의평가 14번 ㄱ과 함께 보면 좋겠네요