수학질문) 쇼츠에서 본건데
게시글 주소: https://orbi.kr/00068798260
“설명할 수 있어야 1등급이다” 이런 뉘앙스의 쇼츠임
내용은 다항함수 f(x)가 f(a)=0이고, f’(a)=0이면
f(x)=(x-a)^2 ~~~이다. 이 과정을 수학적으로 설명해야
1등급이다. 라고 하시는데
5등급인 저는 ‘저게 어려운가?’ 싶었음.
제 생각) 그냥 a에서 x축과 만나는데 그 점에서 극값이니 x축과 딱 a에서 접하니 f(x)는 (x-a)^2 ~~ 즉, a에서 중근을 가질 수 밖에 없다고 생각했는데
쇼츠가 걍 어그로인가요? 아니면 다른 1등급식 설명이 있나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가능...? 너무 야해요.
-
영어단어장 앞에 중학 영단어 500보는데 90퍼가 모르는 단어라서 너무 하기 싫어...
-
미적 먼저 듣고 수1수2로 넘어왔는데 미적은 ㄹㅇ 대가리 깨질 것 같았는데...
-
안본다는 소리임
-
?
-
수학 질문 5
19학년도 6모 21번 나 조건에서 x = 파이 미분가능성 판단 이렇게 해도 됨?
-
Ladies and Gentlemen, My name is Ryan from...
-
이거 사람이 풀라고 낸게 맞냐? 난이도 그냥 말이 안되는데
-
영묵아 최고다
-
세지vs물리 3
반수준비하고 있고 작년에 물리 수능 봤을때3등급 나왔었습니다. 세계지리는 단 한번도...
-
새기분은 OT가 없어서 판단을 못하겠음 독서랑 문학 둘 다 알려주랑
미분해서. 0이라고 극값을 가지지 않습니디
1. x=a에서 극값을 갖는 지는 알 수 없습니다.
2. 쇼츠의 경우 접하면 중근인 이유를 설명할 수 있어야 한다는 것을 말하신 것으로 보입니다.
아 1.에서 말씀하신 것은 이해됐습니다.
x=a에서 극값을 가지면 -> f’(a)=0 이라는 명제는 참이지만 그 역은 참이라고 확정지을 순 없군요.
예를 들어 미분했을 때 극값이 없는 순증감함수같은 예외적인 상황이 있군요.
미적 3붕이의 설명
f가 다항함수일 때
f(a)=0 <=> f가 (x-a)로 나누어 떨어진다.
f(x)=(x-a)Q(x)
f’ (x)= Q(x) +(x-a){Q(x)}’
f’ (a)=0이면 Q(a)=0.
Q(x)=(x-a)h(x)이므로
즉 f(x)=(x-a)^2 x h(x)
f는 (x-a)를 적어도 2개이상 가진다.
인수정리와 곱미분으로 확인하는 방법이군요 . 감사합니다.
별개로 어그로는 맞음
매번 저런 방향으로 풀 게 아니면 저런거 할 줄 알아서 얻는게 없음