수학질문) 쇼츠에서 본건데
게시글 주소: https://orbi.kr/00068798260
“설명할 수 있어야 1등급이다” 이런 뉘앙스의 쇼츠임
내용은 다항함수 f(x)가 f(a)=0이고, f’(a)=0이면
f(x)=(x-a)^2 ~~~이다. 이 과정을 수학적으로 설명해야
1등급이다. 라고 하시는데
5등급인 저는 ‘저게 어려운가?’ 싶었음.
제 생각) 그냥 a에서 x축과 만나는데 그 점에서 극값이니 x축과 딱 a에서 접하니 f(x)는 (x-a)^2 ~~ 즉, a에서 중근을 가질 수 밖에 없다고 생각했는데
쇼츠가 걍 어그로인가요? 아니면 다른 1등급식 설명이 있나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고딩땐 진짜 열정많고 혈기왕성 했는데 지금은 그냥 무기력함 왜지
-
작년엔 정들면 탈릅하고 합격증 올리고 탈릅하고 새르비하다 탈릅하고 그냥 족족 떠났던...
-
밤마다 오르비에 떨치러 간다고 글 싸는 새끼들이 한둘이 아니었는데 왜 나에 대한 기준만 엄격함?
-
왜저러는거지
-
ㅈㄱㄴ 먼가 코가 무겁고 조이는 느낌
-
라방중인데 시청자좀 차면 넣는대 tik-tok.com/live/06
-
우울 불안 그리움 집착 번식본능 등등
-
진짜 오래전애 배운거라 꺼먹었어요
-
인생의 쓴맛을 겪고난뒤로 무감각하고 건조한 사람이 된것같음...
-
난말이야 솔직히 말할게 언제 어디서든 착하게 말하고 싶은데 빌런들이 항상 있더라고...
-
메타의 정상화 1
박력있는 여자는 멋있음
-
이젠 대가리에 일과 돈밖에 없는 냉철한 사람이 되어야 함
-
뭔가 엄청난 메타가 있었던건가...?
-
저 스스로가 마음에 드는 것 같아요
-
베르테르 35번 1
ㅇㅇ
-
내가 젤 좋아하는거 두가지
-
이쁜누님들 많겠지? 일본어는 못 하는데 대화 해보고 싶다
-
자연스럽게만지는....더보기
-
누군 지 꼬1추도 올리는 마당에 뭐가 안되겠나 싶음
-
다른애로 좀 바꿔봐라 좀..;
-
라방중인데 시청자좀 차면 넣는대 tik-tok.com/live/06
-
사실 저런 문제로 진짜 헤어질지 말지 고민 많이 했고 여기서 다른 분들께 조언...
-
ㄹㅇ임
-
캬캬
-
옯뉴비인데 4
분위기가 매일 달라짐
-
한살이라도 어릴때 빨리 하세요
-
자*만지고추천누리기야 아니면 자고만남추구야 자연스러운만남추구야 자연스러운 만남은 또...
-
소개받으면 먼가 어색하고 좀 그럼 친구같은 사이에서 발전하는게 좋음
-
자 모두 잠시 여길 봐주세요~
-
그런김에 밸런스 게임 한사람하고 800 Vs 800명
-
취침 5
-
챗gpt피셜 공부 스트레스 해소 때문이라는데?
-
이상 형 6
오늘도 멋있어.
-
소신발언 12
제로음료 개맛없음
-
식사한 번 할 수 있냐 물었는데 자기가 사겠대 근데 바쁜사람이라 연락이 너무 안 됨...
-
라방중인데 시청자좀 차면 넣는대 tik-tok.com/live/06
-
본인 이상형 8
징거더블다운 사주는사람
-
아닌가
-
맨날 연애메타네 3
모쏠아다는 할 말이 없다..
-
입 다이어트가 아니라 진짜함 좀 비틀거리고 주변에서 걱정해주는 정도지만 ㄱㅊ아요 더 빼고싶음
-
금요일에 콘서트 다녀왔는데 너무 도파민 터졌어서 그런가 역으로 우울해졌어요
-
도저히싫어할수가없어서 다시 사랑할수밖에없는사람 끊임없이 시간에 떠밀려가며...
-
걍 인터냇 유머글만 읽어주던데 도롱차 <<<<< 이분이 시초인거같은데 ㅈㄴ 이쁨...
-
낯간지렂잖아 자기야가 뭐야 이름이나 불러..
-
투자의 신이 되고 싶구나
-
전에 알던분이 4
목소리가 진짜 좋아서 내가 맨날 누나 알바힘들면 관두고 버튜버 해봐 이랬는데 썸이 깨졌어 하
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
아 이거 정말 문제야 채팅으로는 사랑한다! 라랑래! 다 할 수 있음 17
말로는 못함 부끄렁… 유케 말로해.. 사랑 ‘해’ 라고 말해본적이 별로 없어 사랑한다라고많이하지
-
수특 독서 2
봐야된다고 생각하시나요???
-
그냥 다 지겨움 17
다 지겨움...
미분해서. 0이라고 극값을 가지지 않습니디
1. x=a에서 극값을 갖는 지는 알 수 없습니다.
2. 쇼츠의 경우 접하면 중근인 이유를 설명할 수 있어야 한다는 것을 말하신 것으로 보입니다.
아 1.에서 말씀하신 것은 이해됐습니다.
x=a에서 극값을 가지면 -> f’(a)=0 이라는 명제는 참이지만 그 역은 참이라고 확정지을 순 없군요.
예를 들어 미분했을 때 극값이 없는 순증감함수같은 예외적인 상황이 있군요.
미적 3붕이의 설명
f가 다항함수일 때
f(a)=0 <=> f가 (x-a)로 나누어 떨어진다.
f(x)=(x-a)Q(x)
f’ (x)= Q(x) +(x-a){Q(x)}’
f’ (a)=0이면 Q(a)=0.
Q(x)=(x-a)h(x)이므로
즉 f(x)=(x-a)^2 x h(x)
f는 (x-a)를 적어도 2개이상 가진다.
인수정리와 곱미분으로 확인하는 방법이군요 . 감사합니다.
별개로 어그로는 맞음
매번 저런 방향으로 풀 게 아니면 저런거 할 줄 알아서 얻는게 없음