질문]미적_도함수 부호판별 과정
게시글 주소: https://orbi.kr/00068674391

[교과서적 해법]에서
도함수의 부호판별을 위해 원함수가 (0,ㅠ)에서 증가함수.
따라서 첫 극점이 극대가 되고 이는 극대극소가 반복될 것임을 바로 설명하고 있는데,
나눌 적에, cos값이 0이 아님 만을 고려해야 할 뿐만 아니라
Cos의 부호에 따라 극대, 극소가 달라짐을 또한 고려해야 되는 것이 아닌가요? 제가 놓치고 있는 부분이 있을 까요?.
교재는 한완기 미적_F2.13
기출 문항으로는 2021.9.가 20번 입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1컷 42인걸 현장에서 풀면 눈물콧물 다 짜내고 집에서 내 점수 기다릴 엄마생각...
-
아--아---아 그것은 바로 롤드컵이 시작하기 때문입니다 GOAT
-
학창시절이 떠오르네요
-
평가원 성적표 0
영어칠때 속뒤집어져서 병원갔는데 성적표 안나오나요?
-
이 문제의 2번 선지에서 ‘자신의 집’ 이라는 표현이 쓰이는데 도적놈처럼 지내는...
-
고3 결석 질문 1
질병결석하면 처방전 필요하잖아요? 전에 받아뒀던 처방전 복사해서 날짜만 바꿔서...
-
20회 난이도가 절대 1컷이 86 나올 시험지가 아닌데; 그래서 찾아보니 짝수회차는...
-
이감 국어 파이널1 제 7차 예비평가 등급컷 어케봄.. 7
아 너무 복잡해서 못찾겠어요...
-
적생모 시즌2 5회입니다 (다)에서 자극전파 상황인데 물질문화의 전파가 일어났다고...
-
에어팟 시험장 반입 12
국어 풀때 귀마개 유무 여부로 집중도가 많이 달라져서 그러는데 에어팟 안에 전자장치...
-
솔직히 그럴거같지는 않은데 수학에서 수상하 내용으로 변별시도할거다...? 출제원칙상...
-
신라 왕조 인물들임 박지마 박아달라
-
진짜 개크게 흐아아아아아암~~~~ 하는데 얼마나 피곤하면 저러지 안쓰럽다......
-
솔직히 국수는 그냥 그러려니 하는데 과탐은 진짜 레전드네 3
보통 수능 끝나고 이런 반응 나와야하는데 올해는 9모부터네
-
으아아 어지러워 2
미치겠네 분명 안 어지러운데 어지러운 느낌이
-
비율 2.xx이면 만백 99임?
-
좋았거나 많이 배웠던 순으로
-
2랑 3 완충지대가 넓음
-
슬프다 5
물리 재밌는데 물리수요가 줄어들거라는게 슬프네
죄송합니다
사진 다시 올렸습니다.
혹시 g'이 어떻게 생겼을까요?
앗 죄송합니다..[교과서적 해법] 아래에 보시면
2/파이제곱[sinu-ucosu] (u= 파이루트x) 입니다
다시올리긴 했는데 글씨가 작아 보기 힘드실 것 같네요...
잠시만요 봐볼게요
감사합니다...
제가 생각한 cos의 부호 고려도 타당한지 봐주실 수 있으신가요... 질문할 곳이 이곳밖에 없어서..
네네 지금 막 패드켰엉ㅅ
일단 g(x)의 극점을 찾는 것 같은데 g(x)의 극점은 g'(x)의 부호변화 지점에서 생기잖아요
그리고 g'(x)는 정적분으로 정의돼있으니까 연속함수이기 때문에 부호변화가 생기는 지점에서는 g'(x)=0이어야 해요
그래서 g'(x)=0의 방정식을 풀건데 sin과 cos이 덧셈뺄셈으로 연결돼있으면 cos으로 나눠서 tan로 보는 게 편하기 때문에 cos으로 나누는 걸 염두에 두고
당연히 말씀하신대로 cos으로 나누려면 cos이 0이 아니어야 하고 그러면 보통 cos이 0일 때는 특수하게 따로 확인해주고, cos이 0이 아닐 때는 일반적으로 확인하면 되잖아요
cosu=0이면 sinu=1이기 때문에 대입해보면 g'(x)가 0이 아니라서 도함수의 부호변화 판단에서는 cos이 0일 때는 볼 필요가 없는 부분이에요 일단 첫 번째 질문의 답변입니다
그리고 cos의 부호 고려는 g가 불연속함수라면 당연히 따로따로 해줘야하지만,
연속함수에서는 극대와 극소가 번갈아 나오기 때문에 해설에서 처음 극값이 극대인 것만을 확인하고 그 뒤로는 번갈아 나온다. 이렇게 해설한 것 같습니다
cos의 부호까지 고려해서 하려면 되게 복잡해서 저는 잘 못 하겠네요
저라면 연속이니까 번갈아 나온다 이렇게 풀 것 같습니다
혹시 제가 틀렸다고 생각되시거나 잘 해결 안 된 부분은 추가댓글 달아주세요
선생님 말씀대로 상수구간이 존재하지 않는 연속함수인 경우에는 극대가 생긴다면 이후에서는 극소가 나올 수 밖에 없다라고 직관적으로 그래프를 그려보며 생각하니까 받아들여 지는데
상수인 구간이 있는 경우일 수는 없으므로 극대와 극소가 반복된다는 뜻이지요?
그렇다면 상수인 구간이 존재할 지 모르는 경우의 함수에 대해서는 cosx의 부호를 고려해야 되는 것이 맞다고 생각하십니까?
위의 예)에서는 tanx의 점근선을 기준으로 단순히 cos의 부호가 바뀌는 지점이 있어서 판단히 쉽지만,
연속함수 이면서 극소와 극대의 반복이 아닌, 극대(단f''(x)<0인 지점)과 상수부분만이 존재하는 구조(상수 부분이 존재하는 경우)
에서는 고려해야 된다고 생각하시나요?
일단 제가 말한 연속함수는 상수구간이 없는 함수의 뜻이 맞고,
미분가능하게 매끄럽게 이어지면서, 상수구간이 존재한다면(할수도있다면) 상수구간을 제외한 극점을 조사할 때 극대인지 극소인지 모르기 때문에 이 문제의 해설처럼 나눠서 푸는 게 아닌 cos으로 묶어내서 cos의 부호도 같이 고려하는 게 맞을 것 같습니다
이 문제는 상수구간이 없는 연속함수라 이렇게 나온 거고 만약에 질문자님께서 말씀하신 함수로 문제를 낸다면 부호 판단 자체는 좀 더 완화돼서 나오지 않을까 싶네요
감사합니다 성생님!!
(성균관 출신 선생님이라는 굉장히 위트있는 뜻ㅋ;)
이제 아는 것도 참 창피한 일이지만
상수부가 존재하지 않는 (미분가능의 여부와는 상관없이) 연속함수의 경우에는 극대 극소가 반복된다.
라고 일반화 해서 정리해도 괜찮을 까요?
네. 상수부 없는 연속함수는 극대극소가 번갈아 나옵니다
감사합니다. 선생님!!! ㅠㅠ 좋은밤 되세요