Geometric convergence
게시글 주소: https://orbi.kr/00068642663
Here, we state the equivalent formulations of the Geometric convergence
Group theoretic formulation (Hausdorff/Chabauty topology)
1. The geometric topology on Kleinian groups we mean giving the discrete subgroup of $\mathrm{PSL}_2\Bbb C$ the Hausdorff topology as closed subsets.
- The sequence of closed subsets $\{Y_i\}$ tends to a closed subset $Z$ in Hausdorff topology of the collection of closed subsets means (1) For every $z\in Z$, there are $y_i\in Y_i$ such that $\lim_{i\to\infty} y_i = z$. (2) For every subsequence $Y_{i_j}$, and elements $y_{i_j}\in Y_{i_j}$, if $y_{i_j}\to z$ then $z\in Z$.
In other words, $\{\Gamma_i\}\to\Gamma$ geometrically if every element $\gamma\in\Gamma$ is the limit of a sequence $\{\gamma_i\in\Gamma_i\}$ and if every accumulation point of every sequence $\{\gamma_i\in\Gamma_i\}$ lies in $\Gamma$.
Rmk. It's known that the set of closed subsets is compact with Hausdorff topology. In particular, passing to a subsequence, one may always assume that a sequence of nonelementary Kleinian groups converges geometrically.
2. Equipping a hyperbolic 3-manifold $M$ with a unit orthonormal frame $\omega$ at a base point $p$ (called a base-frame), $M$ uniquely determines a corresponding Kleinian group without up to conjugacy condition by requiring that the covering projection
$$\pi:(\Bbb H^3,\tilde{\omega})\to(\Bbb H^3,\tilde{\omega})/\Gamma = (M,\omega)$$
sends the standard frame $\tilde{\omega}$ at the origin in $\Bbb H^3$ to $\omega$.
The framed hyperbolic 3-manifolds $(M_n,\omega_n) = (\Bbb H^3,\tilde{\omega})/\Gamma_n$ converge geometrically to a geometric limit $(N,\omega) = (\Bbb H^3,\tilde{\omega})/\Gamma_G$ if $\Gamma_n$ converges to $\Gamma_G$ in the geometric topology stated in 1, i.e,
-For each $\gamma\in\Gamma_G$ there are $\gamma_n\in\Gamma_n$ with $\gamma_n\to\gamma$.
-If elements $\gamma_{n_k}$ in a subsequence $\Gamma_{n_k}$ converges to $\gamma$, then $\gamma$ lies in $\Gamma_G$.
(intrinsic) Manifold formulation
3. $(M_n,\gamma_n)$ converges to $(N,\gamma)$ geometrically if for each smoothly embedded compact submanifold $K\subset N$ containing $\omega$, there are diffeomrophism (or quasi-isometries or biLipschitz) $\phi_n:K\to (M_n,\omega_n)$ so that $\phi_n(\omega) = \omega_n$ and so that $\phi_n$ converges to an isometry on $K$ in the $C^\infty$-topology.
Rmk. Note that one can formulate the above by saying that for $\epsilon>0$, there is a sequence of isometric embeddings $\beta_i: B_{\epsilon}(\phi_i(x))\to\Bbb H^3$ from $\epsilon$-ball around $\phi_i(x)\in M_i$ so that $\beta_i\circ\phi_i$ converges to an isometric embedding of some neighborhood of $x\in N$ into $\Bbb H^3$.
4. A sequence of Kleinain groups $\Gamma_i$ converges geometrically to the Kleinain groups $\Gamma_G$ if there exists a sequence $\{r_i,k_i\}$ and a sequence of maps $\tilde{h}_i:B_{r_i}(0)\subset\Bbb H^3\to\Bbb H^3$ such that the following holds:
(1) $r_i\to\infty$ and $k_i\to 1$ as $i\to\infty$;
(2) the map $\tilde{h}_i$ is a $k_i$-bi-Lipschitz diffeomorphism onto its image, $\tilde{h}_i(0) = 0$, and for every compact set $A\subset\Bbb H^3$, $\tilde{h}_i|_A$ is defined for large $i$ and converges to the identity in the $C^\infty$-topology; and
(3) $\tilde{h}_i$ descends to a map $h_i:Z_i = B_{r_i}(p_G)\to M_i = \Bbb H^3/\Gamma_i$ is a topological submanifold of $M_G$; moreover, $h_i$ is also a $k_i$-bi-Lipschitz diffeomorphism onto its image. Here, $p_G = \pi_G(0)$ where $\pi_G:\Bbb H^3\to M_G$.
Gromov-Hausdroff formulation
5. The sequence of discrete groups $\{G_n\}$ converges polyhedrally to the group $H$ if $H$ is a discrete and for some point $p\in\Bbb H^3$, the sequence of Dirichlet fundamental polyhedra $\{P(G_n)\}$ centered at $p$ converge to $P(H)$ for $H$, also centered at $p$, uniformly on compact subsets of $\Bbb H^3$. More precisely, given $r>0$, set
$$B_r = \{x\in\Bbb H^3:d(p,x)<r\}.$$
Define the truncated polyhedra $P_{n,r} = P(G_n)\cap B_r$ and $P_r = P(H)\cap B_r$. A truncated polyhedron $P_r$ has the property that its faces (i.e. the intersection with $B_r$ of the faces of $P$) are arranged in pairs according to the identification being made to form a relatively compact submanifold, bounded by the projection of $P\cap\partial B_r$. We say that this polyhedral converges if: Given $r$ sufficiently large, there exists $N = N(r)>0$ such that (i) to each face pairing transformation $h$ of $P_r$, there is a corresponds a face pairing transformation $g_n$ of $P_{n,r}$ for all $n\geq N$ such that $\lim_{n\to\infty}g_n = h$, and (ii) if $g_n$ is a face pairing transformation of $P_{n,r}$ then the limit $h$ of any convergent subsequence of $\{g_n\}$ is a face, edge or vertex pairing transformation of $P_r$.
In other words, each pair of faces of $P_r$ is the limit of a pair of faces of $\{P_{n,r}\}$ and each convergence subsequence of a sequence of face pairs of $\{P_{n,r}\}$ converges to a pair of faces, edges, or vertices of $P_r$.
A seuqnece $\{G_n\}$ of Kleinian groups converges geometrically to a nonelementary Kleinian group if and only if it converges polyhedrally to a nonelementary Kleinian group.
Rmk. It's necessary that one needs to assume the limit group nonelementary. It's possible that the geometric limit of nonelementary Kleinian group is an elementary Kleinian group.
6. A sequence $X_k$ of metric spaces converges to a metric space $X$ in a sense of Gromov-Hausdorff if it converges w.r.t. the Gromov-Hausdorff distance. Here, Gromov-Hausdorff means the following:
Let $X$ and $Y$ be metric spaces. A triple $(X',Y',Z)$ consisting of a metric space $Z$ and its two subsets $X'$ and $Y'$, which are isometric respectively to $X$ and $Y$, will be called a realization of the pair $(X,Y)$. We define the Gromov-Hausdorff distance:
$$d_{GH}(X,Y) = \inf\{r\in\Bbb R:\text{ there exists a realization }(X',Y',Z)\text{ of }(X,Y)\text{ such that }d_H(X'.Y')\leq r\}$$
where $d_H$ is a Hausdorff distance.
addendum. A sequence of representations $\varphi_n\in AH(\Gamma)$ converges algebraically to $\varphi\in AH(\Gamma)$ if $\lim_{n\to\infty}\varphi_n(\gamma) = \varphi(\gamma)$ for each $\gamma\in\Gamma$. This is a natural topology once we view $AH(\Gamma) = \mathrm{Hom}(\Gamma,\mathrm{PSL}_2\Bbb C)/\mathrm{PSL}_2\Bbb C\subset \mathrm{Hom}(\Gamma,\mathrm{PSL}_2\Bbb C)//\mathrm{PSL}_2\Bbb C$ as an algebraic variety.
Here, $\mathrm{Hom}$ we implicitly assume it's weakly type preserving but not necessary (strongly) type preserving.
In the manifold term, one can describe the algebraic convergence as follows: Element in $AH(\Gamma)$ can be thought as a homotopy equivalence (called the marking) $h:N\to M$ where $N$ is some fixed hyperbolic 3-manifold with $\pi_1(N) = \Gamma$ such that two elements $(M,h)$ and $(M',h')$ are equivalent if there is an isometry $\psi:M\to M'$ such that $\psi\circ h\simeq h'$. Note that this is equivalent to the discrete faithful representation of $\Gamma$ to $\mathrm{PSL}_2\Bbb C$ by the $K(G,1)$-space property.
Under this view point, a sequence of marked manifolds $(M_i,h_i)$ converges algebraically to $(M,h)$ if there is a smooth homotopy equivalences $H_i: M\to M_i$ compatible with the marking that converges $C^\infty$ to local isometries on compact subsets of $M$.
It's noted that the algebraic convergence of $(M_i,h_i)$ to $(M,h)$ is guaranteed if there is a compact core $K$ of $M$ and a smooth homotopy equivalences $H_i:K\to M_i$ compatible with the markings and which are $L_i$-bilipschitz diffeomorphisms on $K$ with $L_i\to 1$.
Remark/Properties. 1. If $\rho_i:\Gamma\to\mathrm{PSL}_2\Bbb C$ is a sequence of discrete faithful representation that converges algebraically to $\rho$ and geometrically to $\Gamma_G$, then $\rho(\Gamma) = \Gamma_A\subset\Gamma_G$ because by definition, $\Gamma_A$ consists of all convergence sequences $\rho_i(g)$ for fixed $g\in\Gamma$ whereas $\Gamma_G$ contains all convergence sequences of the form $\rho_i(g_i)$ for $g_i\in\Gamma$.
2. Although after passing to a subsequence, algebraically convergence sequence implies geometric convergence, geometric convergence itself does not imply algebraic convergence.
3. Suppose a sequence of discrete faithful representations $\rho_i:\Gamma\to\mathrm{PSL}_2\Bbb C$ converge algebraically to $\rho$ and geometrically to $\Gamma_G$. Then there is not $\gamma\in\Gamma_G - \rho(\Gamma)$ with $\gamma^k\in\rho(\Gamma)$ for some $k\geq 2$. In particular, if the image $\rho(\Gamma)$ of the algebraic limit has finite index in the geometric limit $\Gamma_G$, then $\rho(\Gamma) = \Gamma_G$.
$(\because)$ Suppose there is $g\in\Gamma_G - \rho(\Gamma)$ with $g^k = \rho(\eta)$ for some $\eta\in\Gamma$ for $k\geq 2$. Since $g\in\Gamma_G$, there is a sequence $\gamma_i\in\Gamma_i$ that $\rho_i(\gamma_i)\to g$. Taking power $k$ gives
$$\lim_{i\to\infty}\rho_i(\gamma_i^k) = g^k = \rho(\eta) = \lim_{i\to\infty}\rho_i(\eta).$$
It can be shown (via nontrivial argument) that $\rho_i(\gamma_i^k) = \rho_i(\gamma)$ using the fact that $\rho_i$ converges algebraically to $\rho$. Since the representation is faithful, this implies $\gamma_i^k = \gamma$ for large $i$. It can be shown also that the set of roots $\gamma = \gamma_i^k$ is finite in general. Hence, after passing to a subsequence, $\gamma_i = \gamma_j$ for all $i,j$ so that $g\in\rho(\Gamma)$ which is a contradiction. $\square$
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
마황 ㅋㅋㅋ 2
개웃기네
-
오늘 봤는데 비문학은 그냥 무난하고 문학이 좀 헷갈리는 선지가 있었던거 같음
-
침대 근처만 가면 중력이 세져서 못일어남
-
너무 힘들어 0
그냥 다 때려치고 싶다 아무래도 난 혼자가 편한 듯 아 귀찮아 힘들어 즐겁지도 않은...
-
선넘질 받습니다 1
댓글 달아주시면 새벽에 몰아서 답해드림
-
7덮 화작 3
90점 ㅁㅌㅊ..?
-
환경윤리;; 1
수특풀고 엥 무난한데? 이랫는데 마더텅 풀고 대가리 깨고싶아짐
-
알려주세요
-
우루과이 브라질이라니
-
대 민 철 을 달아주세욥
-
누가뭐라해도 견딜수 있었어
-
ㄹㅇ 다맞은줄아라는데
-
6월 모의평가 채점결과 분석 - 1편 재학생과 N수생 0
안녕하세요. GT SCIENCE ZONE 입니다.오늘은 6월 모의평가 채점결과를...
첫번째 댓글의 주인공이 되어보세요.