Geometric convergence
게시글 주소: https://orbi.kr/00068642663
Here, we state the equivalent formulations of the Geometric convergence
Group theoretic formulation (Hausdorff/Chabauty topology)
1. The geometric topology on Kleinian groups we mean giving the discrete subgroup of $\mathrm{PSL}_2\Bbb C$ the Hausdorff topology as closed subsets.
- The sequence of closed subsets $\{Y_i\}$ tends to a closed subset $Z$ in Hausdorff topology of the collection of closed subsets means (1) For every $z\in Z$, there are $y_i\in Y_i$ such that $\lim_{i\to\infty} y_i = z$. (2) For every subsequence $Y_{i_j}$, and elements $y_{i_j}\in Y_{i_j}$, if $y_{i_j}\to z$ then $z\in Z$.
In other words, $\{\Gamma_i\}\to\Gamma$ geometrically if every element $\gamma\in\Gamma$ is the limit of a sequence $\{\gamma_i\in\Gamma_i\}$ and if every accumulation point of every sequence $\{\gamma_i\in\Gamma_i\}$ lies in $\Gamma$.
Rmk. It's known that the set of closed subsets is compact with Hausdorff topology. In particular, passing to a subsequence, one may always assume that a sequence of nonelementary Kleinian groups converges geometrically.
2. Equipping a hyperbolic 3-manifold $M$ with a unit orthonormal frame $\omega$ at a base point $p$ (called a base-frame), $M$ uniquely determines a corresponding Kleinian group without up to conjugacy condition by requiring that the covering projection
$$\pi:(\Bbb H^3,\tilde{\omega})\to(\Bbb H^3,\tilde{\omega})/\Gamma = (M,\omega)$$
sends the standard frame $\tilde{\omega}$ at the origin in $\Bbb H^3$ to $\omega$.
The framed hyperbolic 3-manifolds $(M_n,\omega_n) = (\Bbb H^3,\tilde{\omega})/\Gamma_n$ converge geometrically to a geometric limit $(N,\omega) = (\Bbb H^3,\tilde{\omega})/\Gamma_G$ if $\Gamma_n$ converges to $\Gamma_G$ in the geometric topology stated in 1, i.e,
-For each $\gamma\in\Gamma_G$ there are $\gamma_n\in\Gamma_n$ with $\gamma_n\to\gamma$.
-If elements $\gamma_{n_k}$ in a subsequence $\Gamma_{n_k}$ converges to $\gamma$, then $\gamma$ lies in $\Gamma_G$.
(intrinsic) Manifold formulation
3. $(M_n,\gamma_n)$ converges to $(N,\gamma)$ geometrically if for each smoothly embedded compact submanifold $K\subset N$ containing $\omega$, there are diffeomrophism (or quasi-isometries or biLipschitz) $\phi_n:K\to (M_n,\omega_n)$ so that $\phi_n(\omega) = \omega_n$ and so that $\phi_n$ converges to an isometry on $K$ in the $C^\infty$-topology.
Rmk. Note that one can formulate the above by saying that for $\epsilon>0$, there is a sequence of isometric embeddings $\beta_i: B_{\epsilon}(\phi_i(x))\to\Bbb H^3$ from $\epsilon$-ball around $\phi_i(x)\in M_i$ so that $\beta_i\circ\phi_i$ converges to an isometric embedding of some neighborhood of $x\in N$ into $\Bbb H^3$.
4. A sequence of Kleinain groups $\Gamma_i$ converges geometrically to the Kleinain groups $\Gamma_G$ if there exists a sequence $\{r_i,k_i\}$ and a sequence of maps $\tilde{h}_i:B_{r_i}(0)\subset\Bbb H^3\to\Bbb H^3$ such that the following holds:
(1) $r_i\to\infty$ and $k_i\to 1$ as $i\to\infty$;
(2) the map $\tilde{h}_i$ is a $k_i$-bi-Lipschitz diffeomorphism onto its image, $\tilde{h}_i(0) = 0$, and for every compact set $A\subset\Bbb H^3$, $\tilde{h}_i|_A$ is defined for large $i$ and converges to the identity in the $C^\infty$-topology; and
(3) $\tilde{h}_i$ descends to a map $h_i:Z_i = B_{r_i}(p_G)\to M_i = \Bbb H^3/\Gamma_i$ is a topological submanifold of $M_G$; moreover, $h_i$ is also a $k_i$-bi-Lipschitz diffeomorphism onto its image. Here, $p_G = \pi_G(0)$ where $\pi_G:\Bbb H^3\to M_G$.
Gromov-Hausdroff formulation
5. The sequence of discrete groups $\{G_n\}$ converges polyhedrally to the group $H$ if $H$ is a discrete and for some point $p\in\Bbb H^3$, the sequence of Dirichlet fundamental polyhedra $\{P(G_n)\}$ centered at $p$ converge to $P(H)$ for $H$, also centered at $p$, uniformly on compact subsets of $\Bbb H^3$. More precisely, given $r>0$, set
$$B_r = \{x\in\Bbb H^3:d(p,x)<r\}.$$
Define the truncated polyhedra $P_{n,r} = P(G_n)\cap B_r$ and $P_r = P(H)\cap B_r$. A truncated polyhedron $P_r$ has the property that its faces (i.e. the intersection with $B_r$ of the faces of $P$) are arranged in pairs according to the identification being made to form a relatively compact submanifold, bounded by the projection of $P\cap\partial B_r$. We say that this polyhedral converges if: Given $r$ sufficiently large, there exists $N = N(r)>0$ such that (i) to each face pairing transformation $h$ of $P_r$, there is a corresponds a face pairing transformation $g_n$ of $P_{n,r}$ for all $n\geq N$ such that $\lim_{n\to\infty}g_n = h$, and (ii) if $g_n$ is a face pairing transformation of $P_{n,r}$ then the limit $h$ of any convergent subsequence of $\{g_n\}$ is a face, edge or vertex pairing transformation of $P_r$.
In other words, each pair of faces of $P_r$ is the limit of a pair of faces of $\{P_{n,r}\}$ and each convergence subsequence of a sequence of face pairs of $\{P_{n,r}\}$ converges to a pair of faces, edges, or vertices of $P_r$.
A seuqnece $\{G_n\}$ of Kleinian groups converges geometrically to a nonelementary Kleinian group if and only if it converges polyhedrally to a nonelementary Kleinian group.
Rmk. It's necessary that one needs to assume the limit group nonelementary. It's possible that the geometric limit of nonelementary Kleinian group is an elementary Kleinian group.
6. A sequence $X_k$ of metric spaces converges to a metric space $X$ in a sense of Gromov-Hausdorff if it converges w.r.t. the Gromov-Hausdorff distance. Here, Gromov-Hausdorff means the following:
Let $X$ and $Y$ be metric spaces. A triple $(X',Y',Z)$ consisting of a metric space $Z$ and its two subsets $X'$ and $Y'$, which are isometric respectively to $X$ and $Y$, will be called a realization of the pair $(X,Y)$. We define the Gromov-Hausdorff distance:
$$d_{GH}(X,Y) = \inf\{r\in\Bbb R:\text{ there exists a realization }(X',Y',Z)\text{ of }(X,Y)\text{ such that }d_H(X'.Y')\leq r\}$$
where $d_H$ is a Hausdorff distance.
addendum. A sequence of representations $\varphi_n\in AH(\Gamma)$ converges algebraically to $\varphi\in AH(\Gamma)$ if $\lim_{n\to\infty}\varphi_n(\gamma) = \varphi(\gamma)$ for each $\gamma\in\Gamma$. This is a natural topology once we view $AH(\Gamma) = \mathrm{Hom}(\Gamma,\mathrm{PSL}_2\Bbb C)/\mathrm{PSL}_2\Bbb C\subset \mathrm{Hom}(\Gamma,\mathrm{PSL}_2\Bbb C)//\mathrm{PSL}_2\Bbb C$ as an algebraic variety.
Here, $\mathrm{Hom}$ we implicitly assume it's weakly type preserving but not necessary (strongly) type preserving.
In the manifold term, one can describe the algebraic convergence as follows: Element in $AH(\Gamma)$ can be thought as a homotopy equivalence (called the marking) $h:N\to M$ where $N$ is some fixed hyperbolic 3-manifold with $\pi_1(N) = \Gamma$ such that two elements $(M,h)$ and $(M',h')$ are equivalent if there is an isometry $\psi:M\to M'$ such that $\psi\circ h\simeq h'$. Note that this is equivalent to the discrete faithful representation of $\Gamma$ to $\mathrm{PSL}_2\Bbb C$ by the $K(G,1)$-space property.
Under this view point, a sequence of marked manifolds $(M_i,h_i)$ converges algebraically to $(M,h)$ if there is a smooth homotopy equivalences $H_i: M\to M_i$ compatible with the marking that converges $C^\infty$ to local isometries on compact subsets of $M$.
It's noted that the algebraic convergence of $(M_i,h_i)$ to $(M,h)$ is guaranteed if there is a compact core $K$ of $M$ and a smooth homotopy equivalences $H_i:K\to M_i$ compatible with the markings and which are $L_i$-bilipschitz diffeomorphisms on $K$ with $L_i\to 1$.
Remark/Properties. 1. If $\rho_i:\Gamma\to\mathrm{PSL}_2\Bbb C$ is a sequence of discrete faithful representation that converges algebraically to $\rho$ and geometrically to $\Gamma_G$, then $\rho(\Gamma) = \Gamma_A\subset\Gamma_G$ because by definition, $\Gamma_A$ consists of all convergence sequences $\rho_i(g)$ for fixed $g\in\Gamma$ whereas $\Gamma_G$ contains all convergence sequences of the form $\rho_i(g_i)$ for $g_i\in\Gamma$.
2. Although after passing to a subsequence, algebraically convergence sequence implies geometric convergence, geometric convergence itself does not imply algebraic convergence.
3. Suppose a sequence of discrete faithful representations $\rho_i:\Gamma\to\mathrm{PSL}_2\Bbb C$ converge algebraically to $\rho$ and geometrically to $\Gamma_G$. Then there is not $\gamma\in\Gamma_G - \rho(\Gamma)$ with $\gamma^k\in\rho(\Gamma)$ for some $k\geq 2$. In particular, if the image $\rho(\Gamma)$ of the algebraic limit has finite index in the geometric limit $\Gamma_G$, then $\rho(\Gamma) = \Gamma_G$.
$(\because)$ Suppose there is $g\in\Gamma_G - \rho(\Gamma)$ with $g^k = \rho(\eta)$ for some $\eta\in\Gamma$ for $k\geq 2$. Since $g\in\Gamma_G$, there is a sequence $\gamma_i\in\Gamma_i$ that $\rho_i(\gamma_i)\to g$. Taking power $k$ gives
$$\lim_{i\to\infty}\rho_i(\gamma_i^k) = g^k = \rho(\eta) = \lim_{i\to\infty}\rho_i(\eta).$$
It can be shown (via nontrivial argument) that $\rho_i(\gamma_i^k) = \rho_i(\gamma)$ using the fact that $\rho_i$ converges algebraically to $\rho$. Since the representation is faithful, this implies $\gamma_i^k = \gamma$ for large $i$. It can be shown also that the set of roots $\gamma = \gamma_i^k$ is finite in general. Hence, after passing to a subsequence, $\gamma_i = \gamma_j$ for all $i,j$ so that $g\in\rho(\Gamma)$ which is a contradiction. $\square$
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 정신병걸려 0
중대 공공인재가 730까지 내려왔다고? 난 ㅆ.ㅂ 739엿는데도 쫄려서...
-
3덮 신청 완 1
사탐 수특이라도 사서 감좀 찾아야겠다..
-
역함수 질문 4
역함수는 그래프가 증가 혹은 감소할때만 존재 가능하다고 수하에서 배운것 같은데...
-
고하다 추려대 1
줄여서
-
외대 다군 자전 0
예비200몇명 들었고 5차까지해서 예비18번인데 희망있을까요 오늘이 마지막날인거같은대
-
나 예비군조교라 중앙대 학생예비군 훈련시킬때 주차통제했었는데 자차비율...
-
지금 제가 쓰는 노트북이 해외껀데 (HP) 번장에 전체 매물 4개 나오던데... 안팔리려나ㅠㅠㅠㅠㅠ
-
한 달동안 기하 문제 풀이 및 개념연구 하지 않다보니깐 감을 잃어버리기...
-
이번주까지 띰14듣고 챕터 마무리하고싶은데ㅠㅠ
-
서성한 자연대 vs 중시경 전전 어디갈거?
-
원래 전화 다 못돌리면 남은 인원을 추가모집으로 뽑거나 차기 모집정원으로 이월하거나...
-
tyler the creator- like him 아실분들은 아시겠지만 모르는...
-
지방대 반도체과 다군 9명 뽑는데 현재 예비 4번임 6시 전까지 전추 막차 가능 ?
-
내 주변에서 나이 30 위로는 시립대 말하면 딱 아는 사람 20%도 안되는듯 또래나...
-
근데 왜 홈페이지에 벌써 7차 발표가 올라오냐 오늘 저녁까지 전추하고 끝나는거 아녔음?
-
문과 외대 영어쪽 과 가는데 요즘 외대 많이 낮나요?ㅜ 11
중경외시에서 외대가 제일 낮고 요즘 계속 하락세라고해서요 사회인식도 그런가요?ㅜㅜㅜ
-
강기분은 25강기분 해놔서 바로 새기분 넘어왔는데 작년이랑 구성이 많이 달라져서...
-
그냥 차 좋아하는 친구 과에 한명쯤 잇으면 좋겟고 내차가 랩핑이랑 배기가 워낙...
-
6모 목표 1
97 100 1 96 99 6모라서 좀 높게잡음
-
의대 502 전원생존 치대 502에서 501 까지 돌았다는 얘기도 있고 한의대도 빵났다는데 ㅁㄹ
-
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
이번년에도 그랬고 항상 생지가 표점방어가 잘된다고해서 원래 (물,지)였다가...
-
개형추론 조언 좀 17
목표 2등급인데 이런거 그냥 개특수특수로 밀고 가도 되나여? 하면서 모순이랑 이유...
-
서카포라고 하면 못 참습니닷
-
과외준비 후다닥하고 물2 공부하기
-
비비지마샘 ;;
-
몇 개 정도 틀려도 되나영
-
맞냐?
-
744.5x 전화받았어요 감사합니다..........
-
어차피 여긴 빵꾸 날 수가 없을텐데
-
서울대 고려대 ㅇㅇ..
-
님들도 화이팅 하시길 바랍니다… 건환공 썼는데 다른 과는 빵 나서 우울했는데 결국...
-
진학 5칸 추합 0
정원 200명대 자전 54번대인데 이거 실화? 그냥 ㅈ된거임?
-
나결벽증이라 가족이랑도 못사는데 기숙사생활할수잇음? 15
나특징 ㅈㄴ예민함 그리고 ㅈㄴ 결벽증임 가족도 혀를 내두름 일단...
-
물론 점공은 안해봄 ㅋㅋ 막날 80명 나오나? 중대 중앙대 서강대 성대 경희대
-
기출 독서를 여러번 돌렸고 마더텅을 풀었을때 전체적으로 정답률이 매우 높아 간쓸개를...
-
머리 터질 것 같아
-
의대 나군이 아니라 다군으로 옮김
-
재수생 목표 5
이상적 목표 98 100 1 99 100 현실적 목표 96 98 1 99 96...
-
세종대 공과계열 2
11시부터 시작이라고 되어있는데 지금 돌고있을까요?? 2시간째 예비가 안도는거 같아서요...
-
점심 ㅇㅈ 7
반찬은 오르비야...
-
얼버기 5
나른한 오후에요
-
차라리 입학생 수준이 올해 너무 떨어져서 그만 모집하겠습니다 라고 공지하는 게 화는...
-
어디가시나여 반수 X
-
쉬운건가요?
-
시립대 컴과 0
전추 돌긴 하나요 지금?
-
국영수가 큰일나서 국영수만 12시간정도 하는데 그에 비해 정법 양이 너무 많아서.....
-
시발
-
고대식 640대 중후가 연대식 68초중정돈데 누백상 경제 사회 심리 언홍영 680대...
첫번째 댓글의 주인공이 되어보세요.