국어 비문학 자작 문제(3000덕)
게시글 주소: https://orbi.kr/00068612115
국어 자작 비문학 기술.pdf
오늘은 비문학 중 기술 지문입니다
특히, 10번과 11번은 높은 수준의 추론을 요구하는 만큼 실제 이진법의 성질에 대해 고려하면서 푸시길 바랍니다
(11번 문제는 당연히 평가원이 이렇게 출제할 리는 없으나, 한계를 시험한다 생각하시고 푸시면 될 것 같습니다)
오늘 문제 중 특정 문제는 높은 수준의 추론을 요하고 있는 만큼 잘 생각해보시길 바랍니다
오늘은 어려운 만큼, 4문제 세트임에도 보상을 많이 드리도록 하겠습니다(가장 먼저 각 문제를 맞히신 분께 보상 지급합니다)
I. 2점 문제
8-400 XDK
9-400 XDK
10-1000 XDK
II. 3점 문제
11-1200 XDK
행운을 빌겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 ㅅㅂㅋㅋㅋㅋㅋㅋ
-
걍 귀찮 1
공부 비율, 미적:공통 = 1:0
-
내신cc라 어떻게든 점수를 받을수있을만큼 받아야돼서 2등급이상이 목표입니다
-
맛점하셨나요? 3
뻥이요
-
지방한(동신,우석,원광,상지,동국) 어느정도 성적대 나와야 하나요? 8
안녕하세요 이번에 한의대 목표로 수능 다시 보는 군수생입니다. 작수...
-
학교에 교복많네 2
으흐흐
-
네
-
오늘 왜이러냐 2
10분 지각하고 쉬는시간에 카페갔다가 사람 ㅈㄴ많아서 20분지각 ㅋㅋㅋ 근데 교수님 눈치 못채신듯
-
영어4등급 2
영어4등급인데 정식샘 믿어봐 문장 들을까요 기철샘 문해원 들을까요ㅜㅜ 들어보신분들...
-
전 오늘 신청하러갑니다
-
공부할 의욕이 안나요 ㅠㅠ 공부는 해도해도 재미 없는데 쟤는 왜 저렇게 열심히 하는...
-
탄핵정권의 운명 4월 4일 대개봉
-
작품 감상 그에 따른 한줄 주제로 모든 문제를 풀어낸다< 난 니 풀이방식이 정말...
-
나 입원할래
-
뉴스 어질어지ㄹ 2
원래 자극적인것만 올리는게 뉴스이긴하지만 요즘 진짜 뭐지 뭔 사건이 이렇게 많이 터지냐
-
정벽이 수성못 왔음 15
정벽이 대구 출몰주의하세요
-
동의동의ㅠ
-
첫 모의고사 점수는 부진한데 단기간에 독해력 잘 올리는 거 3달만에 5->2,...
-
고삼이고 수학 4등급인데 과외 일년치 커리를 짜서 어머니께 드리는게 믿음직하려나요?...
-
안녕하세요 국어 커리 진행에 너무 고민이 있어 도와주시면 감사할 것 같습니다. 현역...
-
사탐 지금 부터 시작해서 일주일에 8시간 정도하면 만점가능한가요? 7
사문할 생각입니다 원래 생지인데 현역이고 작수 생명 집모로 3떴고 올해 3모도...
-
학원 나가면 바로 시청이고 저번에도 탄핵 반대 집회 여기서 하던데 진짜 뭔일...
-
흠냐리 2
흠냐뇨이
-
구분법은 알아냇는데 머 대충 XY_2 잇을 때이게 굽은형이라 극성인지 직선형이라...
-
내일이다 4
하루만기다리면스위치2다이렉트가나와요오오오옷
-
주식을 하자말자 2
이게 학교를 다니면서 하다보니 수업 집중이 안되네 ㅋㅋㅋㅋㅋ 아오 국장 왜 들어가서
-
이 1시간을 잘 써봐야게쓰
-
얼버기 21
지금 일어난건 아니지만요..
-
6모 신청할 때 2
패스나 여권 보여줘도 ㄱㅊ아여? 민증 술 먹고 잃어버럇는데..!
-
꽃 이쁘네요 0
.
-
정벽은 아긴데... 아기가 조교를 해도 되는걸까
-
으하하하하 11
-
담주 일욜에 0
꽃놀이 가야지
-
누가제레어뺏어감 9
-
한 3번 보니까 뭔말인지 이해는 간다만 현장에서 봤으면 무조건 2문제 나가리 됐을듯 ㅋㅋ
-
믿기지않는디
-
결과에 상관없이 1
일단 뭔일터질거같아서 무섭다
-
왜 학원이 시청 앞임?????
-
지금 뉴런 기코 1회독씩 돌림 뉴런이랑 기출을 다시 보는게 나을까요 아니면 n제?
-
열심히 하는것은 좋긴한데 심장이 벌렁거리고 한문제 한문제 푸는게 무슨 실모마냥 초...
-
https://orbi.kr/00072589947/%EA%B6%81%EA%B8%88%...
-
3모 30번 0
30번 4번 선지에서 보편적 가치를 따르기 위해 이 부분에서 승상이 죽기전에...
-
빈유 아보카도 5
...?
-
미적 3점 다맞으려면 미적 전범위 최소 1바퀴는 돌려야하는데 그 시간이면 기하 확통...
-
드디어 나왔고만(국수탐 학원 문과중에 2등 ㄲㅂ)
4454?
맞힌 문항: 9
400덕 드리겠습니다!
ㅠ.ㅠ❤️
8번의 4번의 경우, 17-9=8을 계산할 때
17=10001, 9=01001로 나타낼 수 있고 이를 계산할 때 왼쪽에서 두 번째 자리가 계산이 안 되는 문제가 발생합니다
따라서 최상위 비트(맨 왼쪽 비트)에서만 2를 받아내림하여 계산하면 됩니다
-10001-01001=01000
10번의 5번의 경우는 [A]에서 이미 비부호형 정수 이진법에서도 1의 보수와 2의 보수를 사용하면 음수를 표현 가능하다는 식의 진술이 있으므로 옳은 진술이라 볼 수 있겠습니다
1 4 1 5입니다~

세상에, 모두 정답입니다!되게 어렵게 출제한 지문이라 누가 다 맞힐까 걱정이었는데, 정말 미국님은 언제나 대단하십니다
특히 10번과 11번까지 잘 풀어내셨단 것에 대해서 놀랍습니다
보상으로 나머지 2600덕 드리겠습니다!
감사해용 ㅎㅎ
정답(마감)
정수 방식 이진법 (비부호형(unsigned) & 부호형(signed))이 아니라
실수 방식 이진법(고정소수점(fixed) & 부동소수점(floating))이 주제였으면
난이도가 걷잡을 수 없이 높아졌을 것 같네요 ㅋㅋ
8
① 동일한 개수의 비트 하에서 비부호형 정수 방식 이진법으로 나타낼 수 있는 최댓값은
부호형 정수 방식 이진법으로 나타낼 수 있느 최댓값보다 2배 더 큰 수이다.
--> 비트의 개수가 총 n개일 때
비부호형 정수 방식 이진법 : 0 ~ 2^n - 1
(000 ... 000 ~ 111 ... 111)
부호형 정수 방식 이진법 : -2^(n-1) ~ 2^(n-1) - 1
(111 ... 111 ~ 011 ... 111)
따라서 비부호형 이진법의 최댓값은
부호형 이진법의 최댓값보다 2배 더 큰수가 아님.
9
④ ㄱ(오버플로)과 ㄴ(언더플로) 모두 제한된 비트의 개수로 인한 이진법의 경우의
수의 한계와 숫자가 가진 무한한 특성 간의 괴리로 인하여 발생한다.
--> 표시할 수 있는 자릿수는 유한한데 숫자는 무한하므로 ㄱ, ㄴ이 발생할 수밖에 없음.
10
① 동일한 개수의 비트 하에서 1의 보수를 적용하면 일반적인 부호형 정수 방식
이진법을 통하여 도출 가능한 수의 최솟값보다 더 작은 값을 나타낼 수 있다.
--> 비트의 개수가 총 n개일 때
일반적인 부호형 정수 이진법 : -2^n ~ 2^(n-1) - 1
1의 보수가 적용된 이진법 : -2^(n-1) + 1 ~ 2^(n-1) - 1
( 000 ... 000 = 0, 111 ... 111 = 0 )
( 011 ... 111 = 2^(n-1) - 1, 100 ... 000 = -2^(n-1) + 1)
따라서 일반적인 부호형 이진법보다 더 작은 값을 나타내지 못함.
11
⑤ ⓐ(게임 종료 조건이 구동되지 않는 경우)의 상황이 구현되지 않을 때,
이 게임을 통해 얻을 수 있는 점수의 최댓값은 127점이고,
이 게임을 통해 도출가능한 최종적인 점수의 값의 모든 경우의 수는 131이겠군.
--> 8비트 부호형 정수 방식 이진법을 사용하므로 점수 최댓값은 2^7 - 1 = 127점
점수가 0 이상일 때 게임 종료 : 0 ~ 127점 모두 가능
점수가 0 미만일 때 게임 종료 : -1(잡초x1), -2(감자x1 + 독버섯x1), -3점(독버섯x1)
따라서 도출 가능한 최종 점수의 모든 경우의 수는 128 + 3 = 131가지가 됨.

오늘도 완벽한 해설 정리 좋습니다, 오늘은 어려운 제재인 만큼 1000덕 드리겠습니다10번의 1번 선지가 적절하려면 2의 보수로 바꿔주면 됩니다
예를 들어, 8비트 부호형 방식 이진법에서 -127은
1의 보수를 적용하면 10000000
2의 보수를 적용하면 10000001로 표현되는데
이때, 2의 보수에 한해서 1을 감하여 2의 보수가 적용된 10000000을 -128로 사용할 수 있게 됩니다
[A]의 (1의 보수)+1=(2의 보수)의 서술도 그냥 넘어가서는 안 됐었던 거였죠
조사할 때에는 정수 방식 이진법에만 주목했는데, 올인원님 말씀대로 실수 방식 이진법도 상당히 흥미로운 주제인 듯싶네요, 한 번 알아보도록 하겠습니다
항상 감사드립니다
대중의 통제는 무슨 의미인가요?
-> ‘과학의 민주화’
왜 대중의 통제가 필요하다고 파이어벤트는 주장하나요?
->패러다임은 과학자들만의 것으로 여겨지는 데, 이는 과학의 독재 즉, 민주성이 훼손되며 대중의 과학의 진보에 대한 기여를 무시하는 것이나 다름 없기 때문이다.