확률 잘하는사람좀... 평가원 문제 오류??
게시글 주소: https://orbi.kr/00068464203


(문제는 2019년도 시행된 9월 모의고사 수학가형 18번임)
18번에서 (가) 확률을 구할 때 9개를 뽑아 순서에 맞게 나열하는 경우의 수 중
빨6 파1 노2를 뽑아 나열한 경우의수를 구하는 것인데 이경우 아무런 조건 없이 주머니에 빨6파3노3 있고
9개 꺼내서 빨6파1노2 뽑는 확률이면
해설지 풀이가 맞겠지만 이 경우 24점 먼저 획득하면 끝난다는 조건이 붙어있는데,
이 조건을 고려하면 전체 경우의 수가 변하지 않음?
(나)에서도 마찬가지로.... 해설지 읽고 해설 강의 아무리 들어봐도 이런관점 언급조차 안하네 내가잘못생각한건가?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
feat. 감자까앙 과목 하나 잘못 걸린 듯 무슨 과제가 매일 있어 진짜...
-
독재학원에다가 폰 맡겨놓고 다이소에서 알람시계가서 규칙적인 생활하고 아예 폰을...
-
잠안오는데 1
오르비 수기좀 읽을게요
-
초특급 얼버기 2
어제 너무졸려서 9시에 잠
-
자야겟군.. 3
-
뒤돌아 섰을 때 2
언제나 거기에
-
님 2
네
-
시험 끝나고 2
발로란트 하루종일 해야지
-
미치겠네 수능끝나고 만나기엔 넘 긴데 ㅜㅜ 주에 한번만 만나면 안댐?
-
나도여친있어 4
이거 보는 너가 여친임
-
재매이햄이 AI 밀고있던데 AI학과 전망 어떤가요? 0
그머야 외대에 AI학과도 새로 생겼던데 전망 갠츈?
-
실모 벅벅할까요 기출을 더돌릴까요 (참고로 수특 수완은 풀려있는 상태입니다)
-
언매 확통 사탐 2개 기준
-
만나던 애들만 만나니 불가능함
-
농담일까
-
어케하면 안 걸림?
-
두개로 매일 번갈아가면서 쓰시는지 빨고 말리는 시간에 못 들고 다니는거 은근 신경쓰임
-
맥주로 2만원 이상쓴 적 있음 실제 카드값에 나와있었음 찾으면 나옴
-
으어
-
ㅇ ㅏ
-
소신발언 4
뭐하자는 건지...
-
국수탐중에
-
추천좀
-
검색창에 gif 또는 jpg 검색하고 팝콘뜯기
-
으어
-
갑자기 생각난건데 22개정에서도 내신에서 과탐 하나는 섞어서 들어야 함? 아니면...
-
너무 맛있어 보임 https://www.youtube.com/@Kimmilan/videos
-
몇달 째 12시 쯤만 되면 눈물이 흐름 걍 자각도 없이 그러는데 안과를 가바야하나
-
1kg에 20만원 가까이되던데 비쥬얼부터 ㅈㄴ 먹음직스럽긴하네요
-
아무도없나 3
생존신고바람
-
울고 싶을 땐 2
음
-
언매 수행 3
8점 배점에 5/39였어서 2점 까일 위기였는데 잘못 채점하신거여서 4/39 돼서...
-
이에요 이예요 2
ㅣㅖㅛ ㅣㅔㅛ
-
14111 대학 2
이번 티처스에서 수능 14111이신 분이 재수하시던데 14111이면 문과 기준으로...
-
지1도 시간나면 근데 그냥 수요가 없을 듯
-
도태남 ㅇㅈ 2
도태그마등장
-
뭐가 더 나아요? 멀면 힘들지만 또 너무 가까우면 집에 오고싶더라고요.. 전에 집...
-
토익 질문 1
작수 기준 92점인데 3일동안 기출 박치기 하면 730 가눙한가요?
-
입시를 단순하게 해서 학생들을 뽑는다는 생각을 한다 연세대와 성균관대를 같이 보고...
-
http://live.tiktok.com/Dahee2 지금 라방중인데 수위ㄷㄷ
-
수능에서의 논리와 좀 다르다고 생각하는 바입니다만 수능은 작년까지는 동양철학이 주를...
-
언매 수행 3
새롭다가 새-롭다여서 파생어로 분류했는데 단일어였음... 책에도 파생어로 나와 있는데 뭐지?
-
내신 때 윤리 재밌었던 거 같음 지식 확장겸
-
ㅇㅈ 5
-
셋 다 독재예요 너무 멀면 체력적으로 힘든데 또 너무 가까우면 집에 오고싶을것...
-
에픽하이도 좋아 3
-
벌써 소재고갈 4
아무래도 뻘글러는 적성에 안맞나보다
-
Flex ㅇㅈ 2
으흐흐
-
시티팝 감성 9
맞나
확률이라는 건 전체 경우의 수 중 우리가 원하는 경우의 수를 찾는 건데, 설령 빨5파3노1 뽑아서 B가 24점을 먼저 획득하는 경우가 전체 경우의 수에 포함되어 있다고 하더라도 그게 배제되어야할 이유는 없죠. 원하는 경우의수는 분자에 해당하는거니까
애초에 B가 먼저 24점을 획득하는 경우를 배제하고 확률을 구하는건 조건부 확률 아닌가요?
그런데 빨5파3노1의 경우에서 파파파노가 먼저 나열되는 경우는 9개까지 안가고 8개 시점에서 사건이 멈추기 때문에 그 이후를 가정해서 전체 경우의수에 넣어야되는건가요? 아니면 빨3파3노3의 경우는 파파파노노노 나열하면 6개까지 가고 멈출수있는데 그 이후도 가정해서 전체경우의수에 넣는건가요?? 이해가 안됩니다.
전체 경우의 수는 순서를 고려하지 않은 모든 경우의 수를 의미하기 때문에 그런 순서 이해 관계를 개입시키지 않아도 됩니다. 분자에는 말씀주신 빨5,파3,노1가 조건을 만족시키지 않기때문에 적힐 필요가 없고요. 가령 빨간색,파란색,노란색 공을 각각 6개 1개 2개를 뽑는 상황이라면 순서에 관계없이 해당 개수만큼 각 공을 뽑아주면 되기때문에 분모는 전체 12개 중 9개의 공을 뽑은 조합의 수가 적히는것이고, 이때 말씀주신 빨5,파3,노1 개수만큼 뽑는 경우 또한 포함됩니다. 분자는 그저 각각의 색상 중 조건을 만족시키는 공을 뽑는 개수를 조합을 이용해 적어준 것이고요.만약 문제에서 구하는 경우의 수가 말씀주신 것처럼 n번째까지 결정된 이후,n+1번째 순서의 사건에 따라 달라지는 경우 분자에 해당 조취를 취해주시면 됩니다.