[자작 문항] 6평 대비 22번으로 냈던거
게시글 주소: https://orbi.kr/00068383262
갠적으로 모의고사 하나 만드는 거 보다
감질나게 자작문항 하나하나 올려서 맛 보여주는 게 뭔가 조회수 더 높은듯....
사람들이 관심을 더 많이 가져주는 느낌....
사실 이 문제의 원래 주려던 조건은 f(0)=/=0이었는데....그러면 문제 난이도가 꽤나 상승하는 느낌이 없잖아 있을 거 같아서....문제가 무슨 말하는 지 감을 못 잡겠다고(미리 친구에게 풀려본 결과)하길래....
넵....241122를 모방했습니다....저도 문제 만들면서 ptsd가 심하게 오던ㅋㅋㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비최저학력은나구나 21
ㄹㅇ..
-
멀 어떡해 그냥 발뺌하면되는거지
-
흠
-
다시금 떠올리게되네
-
우울하다 1
지금 건대 높공 재학 중인데 반수 관련해서 부모님이랑 의견이 안 맞았어서......
-
진사람 삭발하고 인증하기 ㅇㅇ
-
혀 닦다가 토함 11
ㅜㅜ
-
나 언제 죽음? 4
하 힘들어 ㅠ
-
1회 62점 2회 86점
-
어림도 없지 시발
-
윤사 기출 1
윤리와 사상 마더텅은 끝냈는데 다음으로 임정환쌤의 임팩트를 할까요? 아니면 현돌의 기시감을 할까요?
-
으흐흐
-
난 내일 피파만 팔까 14
팀 갖다 팔까
-
공부용으로 기출지문분석 / 해설집기능만들어봤음요 여기서 더 상세하게 모르는거도...
-
기철햄 들으면 개씹좆노베여도 3등급까지 떠먹여주는데 ㄹㅇ.. 홍보를 안해서 그런건가
-
잘자 7
ㅎㅎ
-
근데안되는거암
-
님드라! 14
한 며칠정도 과탐만 해보는거 어때! 이거 감 좀 잡고싶어... 맨날 개념도 까먹고..
-
올해 초에 오르비 뒤집었다가 탈릅한사람 아닌가
-
그낭 하루종일 놀아버렸어 얼불춤 좀만 더하다 자야지
-
n제 여러권 추천해주시면 감사하겠습니다..
-
얼굴 형이나 하관이 얄쌍한게 외모에 미치는 영향이 큼? V라인이라고하죠
-
먼저 자야겠네요 9
잘자요
-
과연 내년에 입학하고서 연뽕이 얼마만에 빠질까.
-
수학 풀이에 관하여 12
자기 맞는 풀이대로 푸세요 다만, 남(주변이든, 강사, 교사 등 선생님이든..)...
-
공부 안하던데 왜 잘하는거지
-
무슨일 있었는지 쭉 요약해주는 분 500덕 30분까지 제일 상세히 설명해주는 1분께 드림.
-
옛날 유저신가요 1
처음 들어보네요 반응 왤캐 뜨거움
-
25를 그렇게 내고 26을 불로 안낸단게 말이안ㄷ
-
조용하면 커뮤가 아니긴 해
-
좋다
-
비상교육 교과서에는 아예 없네 원래 직접적으로 언급은 안해도 문제로는 있던데
-
네.. 18
-
오늘 산거 10
냄새 ㅆㅅㅌㅊ
-
우우
-
자라고 욕해줘요 9
왜안잠 얘
-
라면추천좀 10
ㅈㄱㄴ 진짬뽕굴진짬뽕스낵면참깨라면진라면 너무많이먹어서 다른거 먹고싶어요
-
잇올 업키 3
성적 한 과목이라도 오르면 해주는거에요?
-
메인 무슨일임 6
왜 저분은 저격당한거죠
계산이 0에 수렴이라 맘에 듦
그냥 계산하라고 할 걸 그랬나....그래도 작수22는 해석만 되면 계산이 많은 편은 아니긴 했어요
+0 제외 둘중 하나 미지수로 줘도됨요
이것도 과조건이라면 과조건이라서
사실 이 생각을 못한 것도 아닌데....글에서 말했듯이 말귀를 못알아 먹겠다고 뭐라 하길래...그냥 넣음뇨....
사실 저것도 함수 g(x)=~의 그래프가 로 적는게 맞는데 내가 실수했다 카더라
앞에 함수 있는데 굳이 그래프라는 말을 뒤에 붙여야 되던가....
'함수가 사분면을 지난다' 라는 말은 어색하지
으음 그렇군
이로운에서 비슷한거 봤는데 고트들은 생각이 비슷한가봅니다 ㅋㅋㅋ
이로운에도 이런게 잇었나....23에는 없었던 거 같은데...
2개의 사분면 지나는거 작년꺼수2 풀면거 봤음뇨이
비슷한게 아닌가 아님말고..
글쿤용....주의해서 만들어야겠다....
41
땡
아 사분면이구나
뭔가 -2랑 0을 둘 다 주는 게 과조건같아서 바꿔봤음
이렇게 만들면 더 ㅈ같아질 수도 잇구나....
65???
땡
암산실패 ㄲㅂ
161??
늦었네 ㄲㅂ
161
오 정답
241122같은 느낌 진짜 받았어요
그래서 저도 나름 잘 만들었다고 생각함뇨ㅋㅋㅋㅋ
두개의 사분면만 지난다=원점을 지난다 맞나여??

그럴 수도 있지만 아닐 수도 있습니다.152/9 맞나요??
정확하내요
(t, f(t))에서의 접선 g(x)가 두 개의 사분면만을 지남
--> g(x) = ax or g(x) = a (a ≠ 0)
(-2, f(-2))에서의 접선이 원점을 지남
& f'(-4/3) = 0 & f'(x) ≥ 0
--> f(x) = 3(x + 2)²x + 4x
∴ f(2/3) = 152/9, p + q = 161
캬ㅑㅑㅑㅑ