[백영고] 2023년 3학년 1학기 미적분 기말고사 손풀이
게시글 주소: https://orbi.kr/00068381175
안녕하세요. 수학의 판도를 바꾸는 Math Changer 어수강 박사 (과천 "어수강 수학" 원장)입니다. 오늘은
[백영고] 2023년 3학년 1학기 미적분 기말고사 손풀이
세 번째 페이지까지는 무척 쉽습니다.
네 번째 페이지, 15번부터가 진검승부 같습니다!
15번 문제의 경우 t, x가 섞여 있다는 것에 주의해야 겠죠? 좌변은 t에 대한 식이지만, 적분 기호 안에서는 x에 대한 식으로 생각하므로 손 나가는데로 풀다간 틀리기 쉽습니다. f( ) <= 이 안에 t, x가 섞여 있는 것을 밖으로 꺼내는 것이 중요하므로~ tx=s로 치환하면 되겠죠?
16번 문제는 합성함수의 그래프의 개형만 잘 따져주면 무난합니다!

다섯번째 페이지부터는 체감난도가 급상승하네요.
17번 문항은 급수와 정적분 사이의 관계에 대한 문제네요. 급수를 정적분으로 잘 바꾸는 것이 관건이겠죠? 주어진 급수의 분모와 분자를 n^2으로 나누기만 하면 어렵지 않게 풀 수 있습니다!
18번 문항은 f(x)=t라는 방정식을 직접 풀기는 어려우므로, 그래프를 이용하면 되겠죠? 이를 위해 f'(x)의 부호를 조사해야 합니다. a의 범위에 따라 f'(x)의 부호가 어떻게 달라지는지 관찰하면서~ 조건을 만족하는 a의 값을 찾으면 되겠네요!
19번 문항은 음함수의 미분법에 대한 문제네요. 미분으로 포장해 놨지만, 사실 상위권 학생이 미분을 못하지는 않겠죠? 관건은 "미분을 통해 얻어낸 식을 어떻게 해석하느냐"입니다. 수학(상)에서 방정식에 대한 기초를 튼튼히 다져놓았다면 근과 계수의 관계를 이용해 쉽게 풀 수 있을 것 같네요 :)
구체적인 풀이는 다음과 같습니다.


마지막 6페이지는 폭탄이네요. 분석적 사고력, 논리적 사고력 및 지구력을 요하는 문제 같습니다. (21번, 22번의 경우 손풀이를 논리적으로 완벽하게 쓰려고 하면 풀이가 한 페이지를 넘어갈 것 같아서 간단히 핵심만 적었습니다.)
20번은 주어진 정적분 값과 함수의 대칭성과 주기성을 이용해서 적분하면 되겠죠?
21번은 |f(x)|가 미분가능하지 않지만, 우미분가능하므로, 우미분계수에 초점을 맞추고 풀면 됩니다! 기출변형 문제로 아마 백영고 3학년 학생들도 많이 접해보았을 것이라 공부를 많이 한 학생이라면 풀만 했을 것 같아요! (만약 기말고사에서 처음 접하는 것이었다면 시간 내에 풀기가 쉽지는 않았을 것 같습니다.)
22번 문항은
1. 미분가능한 함수가 x=a에서 극값을 가지면 x=a에서 미분계수가 0이다.
2. 절댓값은 0 이상이다.
3. 삼차함수의 그래프의 개형
을 적절히(!) 이용해서 풀면 됩니다. (사실 엄밀한 풀이는 매우 길고 복잡하지만, 이 포스팅에서는 핵심만 집고 넘어갈게요! 디테일은 스스로 채워보기 바랍니다. 좋은 공부가 될 거에요!)
전반적으로 중반부까지는 매우 쉽고, 후반부에 고난도 문제가 몰려있는데, 기출 문제 및 변형문제들이라 착실히 공부한 상위권 학생이라면 크게 어렵지 않았을 거라 생각됩니다!
그럼 오늘 포스팅은 여기서 마치도록 할게요! 다음에 또 만나요 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 월요일싫다 1
-
생윤 사문 하루 벼락치기 할건데 많이 나오는 주제나 사상가 없나…뭐 공부하지ㅊㅊ
-
오르비 닉네임 검색해도 왜 안나오지?
-
노래 진짜 너무 좋아요 들어보시는거 강추합니다
-
메가 어준규 vs 이투스 김현수 둘다 좋은 쌤 같아여(둘다 들어봄) 작년 난이도가...
-
10,11,15 끝 이제 호ㅓㄱ통해야지
-
없으면 대신 맛봄
-
저때는 비문하 헬 문학 좀 쉬웠고 제 기억상으론 22 헤겔 브레턴우즈 때...
-
20 21 둘다 그런 형태의 함수였넹
-
공간벡터 재밌었는데
-
섹 4
S
-
6평 전까지 대부분 볼수있을까요?
-
진짜 모르겠다 그냥 홀홀홀 홀짝짝 독립시행인데 왜 체감이 그랬을까
-
Falling in math 244번
-
돈은 다 모았는데 시간이 없네요 여행가느라 수업을 뺄 수도 없는 노릇이고 ㅠ 다들...
-
대체 어케 하는 것임??!!!!?? 좀 쉽게 설명해줄 사람 없냐….
-
‘윤석열 파면’ 아쉽기만 한 일본…“훌륭한 대통령이었는데” 5
헌법재판소가 윤석열 전 대통령 파면 결정을 내린 뒤 일본 언론들이 그의 재임 기간에...
-
이런거 쓰면 우승 가능한가
-
젖지대머리 9
젖지대머리
-
레벨 올랐네 2
아
-
오늘의 아침식사 8
아침기차 타기 전에 역에서 먹은 우동
-
너무 어렵네
-
전공공부 1
갑자기 떠오른 생각인데 ‘공학’ 전반에 통하는 기초 학문이 있는지 어쩐지는 잘...
-
흠냐뇨이 왔저염>3< 16
모두들 에브리바디 하이
-
진짜 제가 알잘깔딱센 3머 국어 재밌게 해설해드림
-
볼에 여드름 남 3
방금 염증 주사 2만원짜리로 끔.살 하고 옴
-
현역이 n수생 칼럼을 어떻게 이김 수시제도 도입해서 현역만의 리그 만들어줘
-
잠을많이못자서 1
아침에굉장히힘들엇음 존나졸앗음
-
점심은 샐러드 2
네
-
언매 미적 생 지 작수 54455 —> 3모 31212 이번 3모 공통 21번 하나...
-
작년에 배웠던게 왜 기억이 안나냐...
-
서울이 법적으로 수도였던 적은 없음 노무현 때 대통령 방해하려고 성종때 경국대전 ㅇㅈㄹ 한거지
-
의사쌤 표정 어두워지면서 이명 때문에 모레 또 와야겠다고 하심.. ㅈ됐댜…
-
내 계좌 망함 2
2.2주석 입갤 ㅋㅋ
-
문과(자연과학 포함)는 인구의 2%면 충분하지 않음? 5
근데 왜 대학 모집 인원의 절반 이상이 문과임? 공학을 곁들이지 않은 자연과학과,...
-
특정안당하겠지
-
기출코드(수분감 진짜 작년에 다 외우다싶이 해서) 뉴런 시냅스 드릴 9평전까지 하고...
-
고3 3모 등급 기준으로
-
영어 풀때 해석 1
해석 하심? 저는 보통 그냥 영어로 받아들이긴 하는데...시다른분은 어떻게 하시는지 궁금함
-
작년 7월에 더 살걸 후회되네
-
국어 질문 3
조건을 갖추었음에도 조건을 구성했음에도 괜찮지 않나요? 왜 답이 5번일까요
-
대치동vs독서실 대치동에서 집까지는 왕복 2시간 좀 넘음
-
자기 신기 있다고 막 댓글 사람들 이렇다 저렇다는거 맞춰준다고 해놓고 내댓글만 댓글...
-
숏은 승리한다 1
버스 수익률 100퍼 돌파 cex
-
ㅈㄱㄴ
-
얼 1
버기! 오늘도 파이팅요
-
칼같이 나누고 이해는 확실히 시간쓰고 정리는 그냥 그렇구나 이렇게 하는게 갑 오브...
-
D-10 6
할수있다 해야한다
-
아아.. 기초적인 임플란트지..
여기 그 김규민님 모교인가
그 분이 누구인가요!ㅎㅎ
서울대 의대 수석입학 한분이요
검색해보니 맞는거 같아요!
와 진짜 어지럽다.
맞는 말씀 같아요!! 피드백 감사합니다! :)