6모 개인적인 총평 & 감상 - 기출조각
게시글 주소: https://orbi.kr/00068312466
안녕하세요. 이번 시간에는 엊그제 있었던 6모에 대한 개인적인 총평과 문제별 감상을 이야기하려고 합니다.
일단 6월 모의고사를 치시느라 고생 많으셨습니다.
평가원 모의고사는 매우 중요하다고 하는 만큼 이번 시험을 통해서 본인 실력을 확인해보고 본인의 문제점을 분석해서 다음 시험에서 개선하는 것을 목표로 잘 활용하시면 좋겠습니다.
또한, 평가원 모의고사를 통해서 올해 평가원의 문제 출제 방향을 확인할 수 있기 때문에 두고두고 복습하시면서 평가원 코드에 잘 맞춰주시면 되겠습니다.
[수학 총평]
6모 수학의 경우 제가 느끼기엔 꽤 어려웠습니다. 12번, 15번, 21번, 22번에서 계산량도 많았고, 14번, 15번 등 독특한 문제도 있어 재밌는 시험이었습니다. 다만 평가원 답게 무지성 난이도 높이기가 아닌 적절히 다양한 방법을 조합해서 난도를 높인 것 같아 공부할 가치가 있는 것 같습니다. 3월의 경우 너무 익숙하게 출제되었고, 5월은 너무 새롭게 출제되어서 혼란이 많았을 것 같은데, 6월은 3월과 5월의 중간을 잘 자리 잡은 것 같은 시험이었습니다.6모는 선택과목이 전 범위가 출제 되지 않았기 때문에 우리가 공부한 것의 100%라고 하기 애매하기도 합니다. 그러니 어려웠다고 점수에 연연하지 말고 주어진 범위에서 나의 부족한 부분을 잘 찾아보시길 바랍니다.
[문제별 감상]
문제별 감상의 경우 확통, 미적만 풀어보았기 때문에 기하는 부득이하게 내용이 없습니다. 이점 양해 부탁드립니다.
[공통 12번]
문제 자체는 쉬우나 계산이 많아 진이 조금 빠지는 문제였습니다. 하지만 이정도의 계산량은 감당할 수 있어야 합니다.
[공통 15번]
(나) 조건을 어떻게 해석할지가 관건이었던 문제입니다. 적분의 성질을 잘 파악해서 접근했어야 했고 이후엔 주어진 조건들로 g(k+1)의 범위를 구하면 되는 문제였습니다.
[공통 20번]
저의 경우 최대, 최소가 되는 경우를 추적해서 답을 찾았지만 문제에서 a,b가 5이하의 자연수로 주어지므로 a, b값을 고정하여 일일이 찾아도 되는 문제였습니다. 오히려 이 문제는 일일이 찾는 것이 더 정확한 풀이입니다.
[공통 21번]
자주 나오는 유형으로 그래프 개형을 파악하고 이에 맞는 수식을 세우는 문제입니다. 이런 문제에서는 특히 4차함수일 때, 변수와 계산이 복잡해지는 것을 주의하여 최대한 간결한 식을 세우려고 노력해야 합니다.
[공통 22번]
보통 15번이 수열의 귀납적 정의가 나왔었는데 이번엔 22번으로 출제되었습니다. 이 문제는 귀납적 정의 중에서도 좀 어려운 편에 속했던 것 같은데 마찬가지로 나열을 통해서 값을 추적해 나가면 됩니다. 귀납적 정의 문제를 풀 때는 규칙을 찾을지, 나열할지 판단하고 나열을 택했으면 a1부터 출발할지, a15처럼 뒤에서 역추적할지 또 판단을 해야 합니다. 어떻게 판단하는지에 따라 계산량이 달라지기 때문에 주의하셔야 합니다.
[확통 28번]
조건부 확률 문제로 동전 배치가 조건을 만족시키는 케이스를 잘 구분한 후 이에 맞춰 식을 잘 세워주시면 됩니다. 이런 문제는 케이스를 꼼꼼하게 구분하는 것이 핵심이기 때문에 놓치는 케이스가 없도록 주의하면 되겠습니다.
[미적 27번]
저도 처음에 굉장히 헤맸던 문제로, AC:AB를 닮음을 이용해 높이의 비로 바꿔서 계산하는 것이 핵심입니다. AC,AB로 문제를 풀려고 하면 값이 굉장히 더러워지고 또 좌표평면에 빗변으로 존재하기 때문에 다른 값들을 활용해야겠다고 생각할 수 있어야 합니다. 3점 문제치고 굉장히 어려웠던 문제라고 할 수 있지만 풀이에 접근한 이후 계산이 쉬워 3점으로 분류된 것 같습니다.
[미적 28번]
그래프의 특이점을 파악한 후 구해야 하는 값을 계산해야 하는 문제였는데 g'의 특성상 생각할 것이 조금 있었습니다. g(x)를 f(x)와의 역함수 관계로 생각하고 문제를 풀고, g(x)의 조건에 맞게 g'(f(a+2))와 g'(f(a+b))를 구분해서 구했어야 하는 문제입니다.
[미적 29번]
그래프의 평행이동을 이용한 문제로 조건에 맞는 모양을 만들고 식을 잘 대입하면 됩니다.
[미적 30번]
tan함수의 덧셈정리, 극한의 성질을 잘 활용했어야 하는 문제로, 특히 힘들만 했던 것은 an+1-an이 파이로 수렴하는 것을 찾는 것입니다. 삼각함수에서 수열의 극한이 나오면 주기성을 이용할 확률이 높으니 이를 잘 유의해 주시면 되겠습니다.
모의고사 총평 및 감상은 기출조각에도 올라가 있으니 참고해 주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요. 전공과외 찾습니다. 1.과외목적: 농생대 식물생산과학부 -...
-
이 팔다리 다짤린 공교육에 능력있는 사람이 그나마 있다는건데 저거 다잡으면 그나마...
-
안녕하세요. 전공과외 찾습니다. 1.과외목적: 농생대 식물생산과학부 -...
-
대학 자퇴 0
학과사무실에 연락하니까 학부장님한테 연락해보라는데 메일로 먼저 써보고 메일...
-
기숙학원 ㅊㅊ 2
에듀셀파 남학생 전용관 어떰? 분위기랑 등등
-
원래 입결보다 높은편인가요?
-
2702명, 934명이나 다맞은거네 얼마나 고인거냐 우리나라 수험생들 ㅋㅋㅋㅋ
-
지금 문서확인번호 검증으로 수능 성적표 위변조 확인 안되는거 맞아? 발급일로부터...
-
삼전 vs 하닉 입결은 냥이 더 높고.. 연고대 인식은 있고.. ㅇㄷ가 맞음?
-
구글링하면서 정보찾다가 디시라는 곳을 알게돼서 요즘 좀 봤는데 재미가 있으니까 계속...
-
졸업이 코앞이지만 오늘부터 공부하려구요 26수능 응시자들 모두 파이팅!
-
제204차 에피/센츄리온 심사 결과 (25년 1월) 6
본 제204차 심사는 2025년 1월 1일부터 1월 31일까지 접수된 신청에 대한...
-
이모 앱에서 채점할려는데 이감 제3차 예비평가가 온라인용 연간패키지에서 3차랑 같은건가요
-
굿모닝 4
-
중앙대 응용통계 0
영어 강의 많아요?
-
기적 2
저는 고등학교때 꿈이 체육선생님 이였습니다 하지만 정작 공부는 게을리 했던...
-
주인 잃은 레어 4개의 경매가 곧 시작됩니다. 마박사"잔모래마을에서 포켓몬 연구를...
-
하닉계약 그정도임? 37
올해 하닉계약에 의대버리고 온사람 꽤있네 ㄷㄷ 아는사람만 세명있음
-
저는갑니다
-
66번 재도전 0
고우
-
안녕하세요. 전공과외 찾습니다. 1.과외목적: 농생대 식물생산과학부 -...
-
공부해요 1
공부공부공부
-
늦잠 자따.. 0
썅..
-
핸드폰따윈 나를 막을 수 없숴 핸드폰절대절대안한다 핸드폰거실에두고공부한다
-
지로함.. 1
상당히 매력적이야
-
과탐 동일 과목 5
물1물2 같이 동일과목 과탐 2개 선택하면 못 가는 의대 어디인가요?
-
똥 좀 그만싸!
-
우흥 2
운지
-
벌써 아침이라니 1
난 누구 여긴 어디
-
대충 비율 얼마나 되나요? 언:화 9:1? 8:2 정도일까요?
-
물리력 따운! 6
담뇨단 비상! 사탐50 나외!
-
제가 만난 에리카 친구들 하나 같이 자부심이 장난 아니던데요 공부 잘해야 또는...
-
안녕지우야너를처음본순간부터좋아했어방학전에고백하고싶었는데바보같이그땐용기가없더라지금은이수...
-
교차나 이런거 생각하면 그런거같은데
-
하 3
ㅈ같다 요즘 공부하는걸 떠나서 인생이 ㅈ 같다 아무것도 하기싫다
-
떼잉 요즘 Mz들은..
-
주변에 중경외시붙 홍익대 자전 예비 경북대붙 광운대 자전 예비 이런 사례들 꽤...
-
ㅈㄱㄴ 그시간에 알바 2일 하는게 나을까요? 제발 저에게 도움을 주세요 12학점...
-
굿
-
유튜브에서 방금 나옴…
-
수1 같음
-
수1도 잘하는건 아닌데 수2를 너무 모담 수2공부량이 수1 넘엇는데 ㅜㅜ 수2 재능이 없다
-
그런 후드집업 이세상에 어디 없나...
-
현정훈T 합류 1
합류하려는데 지금 빨리 합류할까요 아니면 빨리 특특 끝내고 러쉬시즌부터 합류할까요?
-
기상 ㄷㄷ 0
시작..
-
왜냐면 이제부터 기다림이 24시간이 넘을 때마다대가리를 존나 쎄게 쳐서 제 머릿속을...
-
이과가 문과 교차할때 한급간이상 대학레벨을 올릴 수 있다고 들었는데, 원리가...
-
시대인재국어숙제 0
황용일 윤지환샘숙제랑 월간승리랑 비슷할까요? 월간승리에는 기출 리트...
첫번째 댓글의 주인공이 되어보세요.