5덮 수학 어땠음?
게시글 주소: https://orbi.kr/00068151648
시험볼 땐 전체적으로 무난한거 같았는데 14 22 엄밀하게 어캐풀지
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 내성발톱인가 1
개아프다
-
볼륨이 너무 크지 않나 원래 공부습관 잘 잡혀있는 애들 아니면 솔직히 완강 빡셈...
-
나도 힘들다 세상아~
-
동생이 중딩인데 학년말에 진로희망 쓸때 담임이 10분 주고 걍 대기업 직원이라고...
-
오류빼면
-
기숙 추천 좀요 0
제곧네
-
근데일본어 1도못함 그냥 망상이었음
-
먼 잠이여 ㅋㅋ
-
고1때 매3 시리즈 고2때 올오카 + 마더텅 고3때 올오카 비문학 4회독 문학은...
-
엄빠 다 무교임 할머니랑 외할머니는 둘 다 교회 열심히 다녔는데 각각 돌아가시거나...
-
과외샘 찾기 꿀팁ㅊㅊ점 옯과외시장 넘 어렵개생겨서 걍 김과외로 찾을라하는디
-
“네임드의 길“
-
불금이라 다들 나가서 피방이라도 가거나해서 오르비는 잘 안하려나,,,,
-
브레턴우즈 헤겔 again let’s go
-
안좋은데인거임???? 없어졌다 생겼다하던데 근무지가 헬이거나 사장이 ㅈ같나,,,
-
일단 네이밍 간지긴 한데... ?: 대학 어디 다니세요? ??: 저 외의 다녀요...
-
"예수를 배반한 제자가 유다" 라는 사실을 아는 게 상식인지 여부로 논란이 된 적이...
-
대신집에서먹음
-
드릴드릴 1
드릴드
-
생윤 책 0
시켜서 대충 보는데 좀 어려워보임 괜히 생윤했나 싶네요 비문학 윤리 어려워하는데ㅜ
-
메카니카 사둔거 일과에너지 파트 다 끝내고 다시 기출봐야게써
-
30점따리 7등급인데… 가능? 카대 가고싶음 공부 방법 좀 알려주샤ㅠㅜㅜㅡㅡㅠㅠㅠㅠ
-
공부시간도 많아지고 운동도 꾸준히 하고 잠도 제때 자고 사고도 긍정적으로 바뀌고...
-
2주 기간권 vs 50시간 가격은 동일함
-
연애/이성 관련 똥글 29
저는 군대 간 남친 기다리면서 겸사겸사 대학원 연구실 인턴으로 납치당해서 살고...
-
ㅋㅋㅋㅋㅋ
-
감사합니다
-
저는 현역 때 N수 이길 수 있겠다는 생각을 하곤 했었죠.. 19
막상 재수생으로 2개월정도 살아보고 제 기준으로 지금의 저랑 1년전의 저랑...
-
이정도면 ㅇㅁ 뒤졌단 말 나와도 합법 아니냐? 이걸 내가 쳐당하네 씨발ㅋㅋ
-
대충 알던게 너무 많고 구멍도 많아서 통밥영어 탈출하려고 처음부터 다시 진행중 단어...
-
현강 전용 빅포텐 이그나이트 프랙티컬 써킷 생각만 해도 매우 굿이군요
-
동물농장 책 소설 명언 명대사 모음 베스트셀러 인상깊은 구절 0
동물농장 책 소설 명언 명대사 모음 베스트셀러 인상깊은 구절동물농장혁명과 권력의...
-
빅 부티 레이디 6
aka 엉큰녀 쉬 라잌스 미~ 놀이공원가고싶대 그래서 내가 태워줫지 바이킹~
-
중고등학교가 사회성 기르는 곳이지 공부만 하는 곳이 아님 7
진짜 사회 나가면 어떤 사람들이 우리를 마주하고 있을지 모르는데 우리 입맛에만 맞는...
-
내성적임 -> 사람들이랑 잘 못 어울림 -> 혼자 보내는 시간이 많음 -> 혼자만의...
-
국어 영어에도 2~3시간 박고있었다 생각하면 정신나갔을거같음..
-
개인적으로 여자는 22
여자는 22살 남자는 27살 이 외모 전성기라고 생각 반박 시 차은우
-
인터넷에 검색해봐도 정보가 없거나 인터넷에 오개념이 널려있는경우엔 지피티도...
-
이런사람있음?
-
국어백분위 95 수학 백분위97 영어3 물리 2등급 화학 2등급 이거 가능이냐.....
-
망했다 5
하.... 제발 이러지마
-
스파크? 다른건 싸긴 싼데 좀 시원찮아보임
-
특상 전문 연구원도 뽑았다함 근데 연구원들이 너무 급발진해서 본인도말리기힘들다함
-
흠냐뇨이 우웅 이런거 쓰고 있을 생각하면 되게 웃김 ㅋㅋㅋㅋ 아 거울 보고 안웃겨짐 ㅅㅂ
-
시대기출 미쳤네 19
이걸로 과외수업 분량 다나옴
-
언매 기준 1컷 91~92면 물까진 아니고 적당한 정도 아닌가...
-
어려운 책도 읽기 쉬워져서 너무 좋아
-
느금마 보이 느금마 보이
-
아 ㅋㅋ
-
진짜 여기 실전개념 기출로도 ㅈㄴ 충분하고 벅찰듯 끄억끄억 이거 하나로 2등급가자!!
14 종나 어려워 에휴 슈발 이거 어케풂
ㄹㅇㅋㅋ
22그냥 무하한 케이스분류
개형을 찍읍시다
14 개형추론만 하면 금방 나와용!
저도 글케 풀었는데 과정의 엄밀성이 떨어져서ㅋㅋ
시험장에서는 엄밀하게 풀 필요 없구
오답할때만 엄밀하게 분석하면 될 것 같아요!
14번 그냥 9는 멈춰있으니깐 무조건 근이다 해서 그림좀 그리다가 답냈는데 솔직히 좀 발상적인듯.. 제 실력으론 아직 딱히 논리랄게 안보임
저두 비슷함
14는 f(t)<=0 t: [1,9] 발견하고 푸는 게 최선인 거 같고 22는 이차함수 음의영역이랑 만나면 안되고 양의영역에서도 중근가지는것까지만 허용된다고 분석하면 케이스분류가 아주 수월한 느낌
거기까지 분석했는데 음 극대에서 접하지 않을까 하고 맞아서ㅋㅋㅋ
ㅋㅋㅋ 그럼 거의 다 푸신거임
22 f(x)-g(x)로 개형추론 하면 뭔가 답이 될 것 같은 게 딱 보임
정답 개형은 엄밀하게 설명 되는데 나머지 케이스까지 다 보는 건 출제의도가 아닌듯